Graph Analysis: Edge Fixing and Its Impact on Detour Number Metrics R. Oliveira^{*1} & L. Silva²

^{1,2}Institute of Chemistry, University of São Paulo, São Paulo 05508-000, Brazil.

ABSTRACT

We introduce the concept of the total edge fixing edge-to-vertex detour set of a connected graph G. Let e be an edge of a graph G. A set $S(e) \subseteq E(G) - \{e\}$ is called an edge fixing edge-to-vertex detour set of a connected graph G if every edge of G lies on an e - f detour, where $f \in S(e)$. The edge fixing edge-to-vertex detour number defev(G) of G is the minimum cardinality of its edge fixing edge-to-vertex detour sets and any edge fixing edge-to-vertex detour set of cardinality $dn_{efev}(G)$ is an d_{efev} -set of G. Connected graphs of order p with edge fixing edge-to-vertex detour number 1 or q - 1 are characterized. The edge fixing edge-to-vertex detour number for some standard graphs are determined. It is shown that for every pair of positive integers with $2 \le a \le b$, there exists a connected graph G such that $dn_{efev}(G) = a$ and $dn_{efev}(G) = b$, for some edge $e \in E(G)$.

Keywords: detour set ,edge-to-vertex detour set , edge fixing edge –to-vertex detour set,edge fixing edge - to vertex detour number. *Mathematical subject classification 05C12.*

I. INTRODUCTION

For a graph G = (V, E), we mean a finite undirected graph without loops or multiple edges. The order and size of G are denoted by p and q respectively. We consider connected graphs with at least two vertices. For basic definitions and terminologies we refer to [1,4]. For vertices u and v in a connected graph G, the *detour distanceD*(u, v) is the length of the longest u - v path in G. A u - v path of length D(u, v) is called a u - vdetour. It is known that the detour distance form v to a vertex set V(G). The *detour eccentricitye*_D(v) of a vertex v in G is the maximum detour distance form v to a vertex of G. The detour *radius*, rad_DGofG is the minimum detour eccentricity among the vertices of G, while the *detour diameter*, $diam_DGofG$ is the maximum detour eccentricity among the vertices of G. These concept were studied by Chartrand et al.[2]. Let G = (V, E) be a connected graph with at least 3 vertices. A set $S \subseteq E$ is called an *edge-to-vertex detour set* if every vertex of G is either incident with an edge of S or lies on a detour joining a pair of edges of S. The *edge-to-vertex detour numberd*_{ev}(G) of G is an *edge-to-vertex detourd*_{ev}-set of G.

Theorem 1.1[6]

Every pendant edge of a connected graph G belongs to every edge-to-vertex detour set of G.

Theorem 1.2[6]

For any non-trivial tree T with pendant edges, $d_{ev}(T) = k$ and the set of all pendant edges of T is the unique minimum edge-to- vertex detour set of T.

II. THE EDGE FIXING EDGE-TO-VERTEX DETOUR

Number of a Graph Definition 2.1

Let *e* be an edge of a graph *G*. A set $S(e) \subseteq E(G) - \{e\}$ is called an *edge fixing edge-to-vertex detour set* of a connected graph *G* if every edge of *G* lies on an e - f detour, where $f \in S(e)$. The *edge fixing edge-to-vertex detour number* $d_{efev}(G)$ of *G* is the minimum cardinality of its edge fixing edge-to-vertex detour sets and any edge fixing edge-to-vertex detour set of cardinality $d_{efev}(G)$ is an d_{efev} -set of *G*.

Example 2.2

For the graph G given in Figure 2.1, the edge fixing edge-to-vertex detour sets of each edge of G is given in the following Table 2.1.

Fixing Edge (e)	Minimum edge fixing edge-to-vertex detour sets $(S(e))$	$d_{efev}(S(e))$
<i>v</i> ₁ <i>v</i> ₂	$\{v_2v_6\},\{v_6v_7\}$	1
<i>V</i> 2 <i>V</i> 3	$\{v_1v_2, v_6v_7\}$	2
<i>V</i> ₃ <i>V</i> ₄	$\{v_1v_2, v_4v_5\}$	2
V4V5	$\{v_1v_2, v_3v_4\}$	2
<i>V</i> 2 <i>V</i> 5	$\{v_1v_2, v_6v_7\}$	2
V ₆ V ₂	$\{v_1v_2\}$	1

Remark 2.3

For a connected graph *G*, the edge *e* of *G* does not belong to the edge fixing edge-to- vertex detour set *S*(*e*). Also the edge fixing edge-to- vertex detour set of an edge *e* is not unique. For the graph *G* given in Figure 6.1, the edge fixing edge-to- vertex detour sets of the edge v_1v_2 are $\{v_6v_7\}, \{v_2v_6\}$.

III. SOME RESULTS ON THE EDGE FIXING EDGE-TO-VERTEXDETOURNUMBER OF A GRAPH

Theorem 2.4

Let *e* be an edge of *G*. Let *f* be a pendant edge of a connected graph *G* such that $e \neq f$. Then every edge fixing edgeto- vertex detour set of *e* of *G* contains *f*.

Proof. Since $e \neq f, f$ is a terminal edge of a detourhence *f* belongs to every edge fixing edge-to- vertex detour set of *e*of *G*.

Theorem 2.5

Let G be a connected graph and S(e) be an edge fixing edge-to- vertex detour set of eof G. Let f be a non-pendant cut edge of G and let G_1 and G_2 be the two component of $G - \{f\}$. If e = f, then each of the two component of $G - \{f\}$ contains an element of S(e). If $e \neq f$, then S(e) contains at least one edge of component of $G - \{f\}$ where e does not lie.

Proof. Let f = uv. Let G_1 and G_2 be the two component of $G - \{f\}$ such that $u \in V(G_1)$ and $\in V(G_2)$. Let e = f. Suppose that S(e) does not contain any element of G_1 . Then $S(e) \subseteq E(G_2)$. Let h be an edge of $E(G_1)$. Then h must lie on an e - f' detourforsome $f' \in S(e)$. But such a detour $P: v, v_1, v_2, \dots, v_l, v, u, u_1, u_2, \dots, u_s, u, v, v_1, v_2, \dots, v'$ where $v_1, v_2, ..., v_l \in V(G_2)$, $u_1, u_2, ..., v_s \in V(G_1)$ and v' is an end of f' has the cut-edge f twice, hence it is a contradiction. This proves the theorem.By similar argument, we can prove that if $e \neq f$, then S(e) contains at least one edge from a component of $G - \{f\}$ where e does not lie.

Theorem 2.6

Let G be a connected graph and S(e) be a minimum edge fixing edge-to- vertex detour set of an edge eof G. Then no non-pendant cut-edge of G belongs to S(e).

Proof.Let S(e) be an edge fixing edge-to- vertex detour set of an edge e = uvof G. Let f = u'v' be a non-pendant cut-edge of G such that $f \in S(e)$. Since $e \neq f$, let G_1 and G_2 be the two component of $G - \{f\}$ such that $u' \in V(G_1)$ and $v' \in V(G_2)$. By Theorem 6.5, G_1 contains an edge xyand G_2 contains an edge x'y' where $xy, x'y' \in S(e)$. Let $S'(e) = S(e) - \{f\}$. We claim that S'(e) is an edge fixing edge-to- vertex detour set of an edge eof G.

Case 1. Suppose that e = xy is an edge in G_1 and x'y' is an edge in G_2 . Let *h* be avertex of *G*. Assume without loss of generality that h = wz belongs to G_1 . Since u'v' is a cut-edge of *G*, every path joining an edge of G_1 with an edge of G_2 contains the edge u'v'. Suppose that *h* is adjacent with u'v' or the edge xy of S(e) or that lies on a detour joining xy and u'v'. If *h* is adjacent with u'v', then z = u'. Let $P : x, y, y_1, y_2, \ldots, w, z = u$ beaxy -u'v' detour. Let $Q: u', v', v_1', v_2', \ldots, x', y' a u'v' x'y'$ detour. Then, it is clear that *P* followed by u'v' and *Q* is a xy - x'y' detour. Thus *h* lies on the xy - x'y' detour. If *h* is adjacent with xy, then there is nothing to prove. If *h* lies on a xy - x'y' detour, say $x, y, v_1, v_2, \ldots, w, z, \ldots, u', v'$, then let $u', v', v_1', v_2', \ldots, y'$ be u'v' - x'y' detour. Thenclearly $x, y, v_1, v_2, \ldots, w, z, \ldots, u', v', v_1', v_2', \ldots, y'$ detour. Thus *h* lies on a detour joining xy and u'v' of S(e) also is adjacent with an edge of S'(e) or lies on a detour joining e and an edge of S'(e). Hence it follows that S'(e) is an edge fixing edge-to- vertex detour set of an edge e of G such that |S'(e)| = |S(e)| - 1, which is a contradiction to the minimality of S(e).

Case 2.Suppose that $e = xy \in G_2$. The proof is similar to that of Case 1. Hence the theorem follows.

Theorem 2.7

For any non-trivial tree T with kend edges,

 $d_{efev}(G) = \begin{cases} k-1 & \text{if } e \text{ is an end edge of } G \\ k & \text{if } e \text{ is an internal edge of } G \end{cases}$

Proof. This follows from Theorem 2. 4 and Theorem 2. 6.

Theorem 2.8

For the graph $G = C_p(p \ge 4)$, $d_{efev}(G) = 1$, for any edge *e* of E(G).

Proof. Let $C_p: v_1, v_2, v_3, ..., v_p$ be the cycle. Let *e*be an edge of C_p and *f* be an edge adjacent to *e*. Then it follows that $\{f\}$ is an edge fixing edge-to- vertex detour set of an edge *e* of C_p . Hence $d_{efev}(C_p) = 1$.

Theorem 2.9

For the complete graph $K_p(p \ge 4)$, $d_{efev}(G) = 1$ for every edge in E(G).

Proof. We observe that all the edges of K_p can be considered as the edges of C_p and every edge joining the points of C_p . Let *e*be an edge of C_p and *f* be an edge adjacent to *e*. Then it follows that $\{f\}$ is an edge fixing edge-to-vertex detour set of an edge *e* of C_p . Hence $d_{efev}(K_p) = 1$.

Theorem 2.10

Let *G* be a connected graph with at least three vertices. Then $1 \le d_{efev}(G) \le q - 1$.

Proof. For any edge e in G, an edge fixing edge-to-vertex detour set needs at least one edge of G so that $d_{efev}(G) \ge 1$. For an edge $e \in E(G)$, $E(G) - \{e\}$ is an edge fixing edge-to-vertex detour set of e of G so that $d_{efev}(G) \le q - 1$. Therefore $1 \le d_{efev}(G) \le q - 1$.

Remark 2.11

The bounds in Theorem 2.10 are sharp. For the cycle $G = C_p$ $(p \ge 4)$, for an edge e, any edge which is adjacent to e is its minimum edge fixing edge-to-vertex detour set of e of G so that $d_{efev}(G) = 1$. For the star $G = K_{1,q}$, for an edge e, the set of edges $E(G) - \{e\}$ is the unique edge fixing edge-to-vertex detour set of e of G so that $d_{efev}(G) = q - 1$. Thus the star $K_{1,q}$ has the largest possible edge fixing edge-to-vertex detour number q - 1 and the cycle $G = C_p$ $(p \ge 4)$, has the smallest edge fixing edge-to-vertex detour number 1. Also the bounds in Theorem 2.10 is strict. For the graph G given in Figure 2.1, for the edge $e = v_3v_4$, $d_{efev}(G) = 2$ so that $1 < d_{efev}(G) < q - 1$.

Theorem 2.12

Let G be a connected graph of size $q \ge 3$, such that G is neither a star nor a double star. Then $d_{efev}(G) \le q - 2$ for every $e \in E(G)$.

Proof.

Case 1. Suppose that G is a tree such that G is neither a star nor a double star. Then by Theorem $2.7, d_{efev}(G) \le q - 2$, for every $e \in E(G)$.

Case 2. Suppose that G is not a tree. Then G contains at least one cycle, say C. Let e be an edge of G

Subcase 2a. Suppose that $e \in E(C)$. Then S(e) = E(G) - E(C) is an edge fixing edge-to-vertex detour set of an edge *e* of *G* so that $d_{efev}(G) \le q - 2$.

Subcase 2b. Suppose that $e \notin E(C)$. Then setting $S(e) = E(G) - E(C) - \{e\}$ and by the similar argument in Subcase2a we can prove that $d_{efev}(G) \le q - 2$. Hence the proof.

Remark 2.13

The bound in Theorem 2.12 is sharp. For the graph $G = C_3$, it is easily verified that $d_{efev}(G) = q - 2$ for every edge eof G.

Theorem 2.14

Let *G* be a connected graph of size $q \ge 2$ and $e \in E(G)$. Then $d_{efev}(G) = q - 1$ if and only if *e* is an edge of $K_{1,q}$ or *e* is an internal edge of a double star.

Proof. Let G be a connected graph. If e is an edge of $K_{1,q}$, then by Theorem 2.7, $d_{efev}(G) = q - 1$. If e is an internal edge of a double star, then by Theorem 2.7, $d_{efev}(G) = q - 1$.

Conversely, let $d_{efev}(G) = q - 1$ for an edge $e \in E(G)$. Suppose that *e* is neither an edge of $K_{1,q}$ nor an internal edge of a double star. Then by Theorem 2.12, $d_{efev}(G) = q - 2$, which is a contradiction. Therefore *e* is an edge of $K_{1,q}$ or *e* is an internal edge of a double star.

Theorem 2.15

Let *G* be a connected graph with $q \ge 4$, which is not a cycle and not a tree and let C(G) be the length of the longest cycle. Then $d_{efev}(G) \le q - C(G) + 1$ for some $e \in E(G)$.

Proof. Let C(G) denote the length of the longest cycle in G and C be the cycle of length k.

Let $C: v_1, v_2, v_3, ..., v_k$ be a cycle, $k \ge 3$. Since G is not a cycle, there exists a vertex vin G such that v is not a vertex of C and which is adjacent to v_1 , say. Let e be an edge of C. Let $S(e) = E(G) - \{E(C) - e\}$. Clearly S(e) is an edge fixing edge-to-vertex detour set of eofG so that $d_{efev}(G) \le q - C(G) + 1$.

Theorem 2.16

Let G be a connected graph of size $q \ge 3$ which is not a double star and $d_{efev}(G) = q - 2$ for some edge eof G. Then G is unicyclic.

Proof. Suppose that *G* is not unicyclic. Then *G* contains more than one cycle.

Let C_1 and C_2 be the two cycles of *G*. By Theorem 2.15, $|C_1| = |C_2| = 3$.

Case 1. Suppose that C_1 and C_2 have exactly one vertex, say, vin common.

Let e = uv be an edge of C_1 and let $S(e) = E(G) - E(C) - \{e, f\}$, where f = vw, where $w \in V(C_2)$. Then S(e) is an edge fixing edge-to-vertex detour set of an edge e of G so that $d_{efev}(G) = q - 3$, which is a contradiction.

Case 2.Suppose that C_1 and C_2 have a common edge, say, uv. Let e = uv and let $S(e) = E(G) - \{e, uw, uz\}$, where $w \in V(C_1)$ and $z \in V(C_2)$. Then S(e) is an edge fixing edge-to-vertex detour set of eofG so that $d_{efev}(G) = q - 3$, which is a contradiction.

Case 3.Suppose that C_1 and C_2 are connected by a path *P*.

Suppose that e = xu be an edge of C_1 , where x is a vertex common to C_1 are P and let $S(e) = E(G) - \{e, xu_1, xx_1, f\}$, where $xu_1 \in E(C_1)$ such that $u \neq u_1, xx_1 \in E(P)$ and $f \in E(C_2)$. Then clearly S(e) is an edge fixing edge-to-vertex detour set of e of G so that $d_{efev}(G) \leq q - 4$, which is a contradiction.

Theorem 2.17

For a connected graph G, $d_{ev}(G) \le d_{efev}(G) + 1$.

Proof. Let e be an edge of G and S(e) be the minimum edge fixing edge-to-vertex detour set of e of G. Then $S(e) \cup \{e\}$ is an edge-to-vertex detour set of e of G so that $d_{ev}(G) \le |S(e) \cup \{e\}| = d_{efev}(G) + 1$.

Remark 2.18

The bound in Theorem 2.17 is sharp. For the cycle C_p , $d_{efev}(C_p) = 1$ for every $e \in E(G)$ and $d_{ev}(G) = 2$ so that $d_{ev}(G) = d_{efev}(G) + 1$. Also the inequality in the Theorem 2.17 strict. For the graph G given in Figure 2.2, let $e = u_3u_4$. Then $S(e) = \{u_1u_2, u_7, u_8\}$ is an edge fixing edge-to-vertex detour set of e of G so that $d_{efev}(G) = 2$. Also $d_{ev}(G) = 2$. Hence $d_{ev}(G) < d_{efev}(G) + 1$.

Theorem 2.19

For positive integers R, D and $l \ge 2$ with $R < D \le 2R$, there exists a connected graph G with rad(G) = R, diam(G) = D and $d_{efev}(G) = l$ for some $e \in E(G)$.

Proof. When R = 1, we let $G = K_{1,l}$. Then the result follows from Theorem 2.7. Let $R \ge 2$. Let $C_{R+1}: v_1, v_2, ..., v_{R+1}$ be a cycle of length R + 1 and let $P_{D-R}: u_0, u_1, u_2, ..., u_{D-R}$ be a path of length D - R. Let H be a graph obtained from C_{R+1} and P_{D-R} by identifying v_1 in C_{R+1} and u_0 in P_{D-R} . Now add l - 2 new vertices $w_1, w_2, ..., w_{l-2}$ to H and join each w_i $(1 \le i < l - 2)$ to the vertex u_{D-R-1} and obtain the graph G as shown in Figure 2.3. Then $rad_D(G) = R$ and $diam_D(G) = D$. Let $S = \{u_{D-R-1}u_{D-R}, u_{D-R-1}w_1, u_{D-R-1}w_2, ..., u_{D-R-1}w_{l-2}\}$ be the set of end-edges of G. Let e be a non-pendant cut edge of G. By Theorem 2.4, S is a subset of every edge fixing edge-to-vertex detour set of G. It is clear that S is not an edge fixing edge-to-vertex detour set of G and so that $d_{efev}(G) = l$.

Theorem 2.20

For any positive integer $a, 1 \le a \le q - 1$, there exists a connected graph G of size q such that $d_{efev}(G) = a$, for some edge $e \in E(G)$.

Proof. Let *G* be a connected graph.

Case 1.Let a = q - 1. For the star $G = K_{1,q}$, by Theorem 6.7, $d_{efev}(G) = q - 1 = a$ for every edge $e \in E(G)$.

Case 2.a = 1

Let G be a path of length q and e be an pendant-edge of G. Then by Theorem 2.7, $d_{efev}(G) = 1 = a$.

Case 3.1 < *a* < *q* - 1

Let *G* be a tree with *a* end-edges and *q* – *a* internal edges and let *e* be an internal edge of *G*. Then by Theorem 2.7, $d_{efev}(G) = a$.

In view of Theorem 2.17, we have the following realization result.

Theorem 2.21

For every pair of positive integers with $2 \le a \le b$, there exists a connected graph G such that $d_{ev}(G) = a$ and $d_{efev}(G) = b$ for some edge $e \in E(G)$.

Proof. Let *G* be a connected graph.

Case 1.a = b

Let G be a double star with a end-edges and let e be the cut-edge of G. Then by Theorem 2.8, $d_{efev}(G) = a$. Also by Theorem 1.2, $d_{ev}(G) = a$.

Case 2.2 $\leq a < b$

Let $P: u_1, u_2, u_3, u_4, u_5, u_6, u_7$, be a path of order 7. Let $P_i: x_i y_i (1 \le i \le b - a + 1)$ be a copy of a path of order 2. Let H be a graph obtained from the path on P and P_i by joining u_1 with each $x_i (1 \le i \le b - a + 1)$ and u_7 with $y_i (1 \le i \le b - a + 1)$. Let G be the graph obtained from H by adding new vertices $z_1, z_2, ..., z_{a-1}$ and joining each $z_i (1 \le i \le a - 1)$ with u_7 . The graph G is shown in Figure 2.4. First show that $d_{ev}(G) = a$. Let $S = \{z_1u_7, z_2u_7, ..., z_{a-1}u_7\}$ be the set of all pendant-edges of G. By Theorem 1.1, S is a subset of every edge-t0-vertex detour set of eof G. It is clear that S is not an edge-to-vertex detour set of G and so $d_{ev}(G) \ge a - 1$. However $S' = S \cup \{u_6u_7\}$ is an edge-to-vertex detour set of G. Thus $d_{ev}(G) = a$. Let $e = u_1x_1$. By Theorem2.4, $S = \{z_1u_7, z_2u_7, ..., z_{a-1}u_7\}$ is a subset of every edge fixing edge-to-vertex detour set of e of G. It is clear that S is not an edge fixing edge-to-vertex detour set of e of G. It is clear that S is not an edge fixing edge-to-vertex detour set of e of G. It is clear that S is not an edge fixing edge-to-vertex detour set of e of G. It is clear that S is not an edge fixing edge-to-vertex detour set of e of G. It is clear that S is not an edge fixing edge-to-vertex detour set of e of G. It is clear that S is not an edge fixing edge-to-vertex detour set of e of G. It is clear that S is not an edge fixing edge-to-vertex detour set of e of G. It is clear that S is not an edge fixing edge-to-vertex detour set of e of G. It is clear that S is not an edge fixing edge-to-vertex detour set of e of G. It is clear that S is not an edge fixing edge-to-vertex detour set of e of G. It is clear that S is not an edge fixing edge-to-vertex detour set of e of G. It is clear that S is not an edge fixing edge-to-vertex detour set of e of G. It is easily verified that every edge fixing

of *e* of *G* contains $x_i y_i$ ($2 \le i \le b - a + 1$) and so $d_{efev}(G) \ge a - 1 + b - a + 1 = b$. Let $S(e) = S \cup \{x_1 y_1, x_2 y_2, \dots, x_{b-a+1}, y_{b-a+1}\}$. Then S(e) is an edge fixing edge-to-vertex detour set of *e* of *G* so that $d_{efev}(G) = b$. Hence the proof.

REFERENCES

- 1. F.Buckley and F.Harary, Distance in Graph, Addition-Wesley, reading MA, 1990.
- 2. G.Chartrand, H.Escuadro and B.Zang. The Detour Distance in Graphs, J.Combin.math.combin.compute., 53(2005), 75-94.
- 3. G.Chartrand, N.Johns, and P.Zang, The Detour number of Graph, Util.math. 64(2003), 97-113.
- 4. Haynes T W, Hedetniemi S .T and Slater P. J, Fundamentals of Domination in graphs, Marcel Decker ,Inc., New York 1998.
- 5. G.Chartrand, and P.Zang, Introduction to Graph Theory, TataMcGraw-Hill-New Delhi, (2006).
- 6. A. P. Santhakumaran and S. Athisayanathan, The Edge-to-vertex detour number of a graph, Adv. Studies Contem. Math., 21 (2011), No. 4, 395-412