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ABSTRACT

We introduce the concept of the total edge fixing edge-to-vertex detour setof a connected graph G. Let e be an edge
of a graph G. A set S(e) c E(G) — {e}is called an edge fixing edge-to-vertex detour set of a connected graph G if
every edge of G lies on an e - f detour, where f € S(e). The edge fixing edge-to-vertex detour number defev(G) of
G is the minimum cardinality of its edge fixing edge-to-vertex detour sets and any edge fixing edge-to-vertex detour
set of cardinality dngg,(G) is an dege,-Set of G. Connected graphs of order p with edge fixing edge-to-vertex
detour number 1 or q — 1 are characterized. Theedge fixing edge-to-vertex detour number for some standard graphs
are determined. It is shown that for every pair of positive integers with 2 < a < b, there exists a connected graph
G such that dn.,(G) = aand dngs,(G) = b, for some edge e € E(G)..

Keywords: detour set ,edge-to-vertex detour set, edge fixing edge —to-vertex detour set,edge fixing edge - to
vertex detour set,edge fixing edge - to - vertex detour number.
Mathematical subject classification 05C12.

l. INTRODUCTION

For a graph G = (V, E), we mean a finite undirected graph without loops or multiple edges. The order and size of G
are denoted by p and g respectively. We consider connected graphs with at least two vertices. For basic definitions
and terminologies we refer to [1,4].For vertices u and v in a connected graph G, the detour distanceD (u, v) is the
length of the longest u — v path in G.A u — v path of length D(u, v) is called a u — vdetour. It is known that the
detour distance is a metric on the vertex set V(G). The detour eccentricitye,(v) of a vertex v in G is the maximum
detour distance form v to a vertex of G.The detour radius,rad,GofGis the minimum detour eccentricity among the
vertices of G, while the detour diameter, diampGof G is the maximum detour eccentricity among the vertices of
G. These concept were studied by Chartrand et al.[2]. Let G = (V, E) be a connected graph with at least 3 vertices.
A set S c E is called an edge-to-vertex detour set if every vertex of G is either incident with an edge of S or lieson a
detour joining a pair of edges of S. The edge-to-vertex detour numberd,,, (G) of G is the minimum cardinality of its
edge-to-vertex detour sets and any edge-to-vertex detour set of cardinality d,,,(G) is an edge-to-vertex detourd,,,-set
of G.

Theorem 1.1[6]
Every pendant edge of a connected graph G belongs to every edge-to-vertex detour set of G.

Theorem 1.2[6]
For any non-trivial tree T with pendant edges, d,.,(T) = kand the set of all pendant edges of T is the unique
minimum edge-to- vertex detour set of T.

Il.  THE EDGE FIXING EDGE-TO-VERTEX DETOUR

Number of a Graph

Definition 2.1

Let e be an edge of a graph G. A set S(e) S E(G) — {e} is called an edge fixing edge-to-vertex detour set of a
connected graph G if every edge of G lies on an e - f detour, where f € S(e). The edge fixing edge-to-vertex
detour number d,s.,,(G) of G is the minimum cardinality of its edge fixing edge-to-vertex detour sets and any edge
fixing edge-to-vertex detour set of cardinality d,f.,(G) isan d.s, -set of G.

Example 2.2

For the graphG given in Figure 2.1, the edge fixing edge-to-vertex detour sets of each edge of G is given in the
following Table 2.1.
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Figure 2.1

Table 2.1
Fixing Edge | Minimum edge fixing edge-to-vertex
(e) detour sets (S(e)) defer(S(€))
ViVa {vove 1 {vevys} 1
VaVs {v1v2, V6 V7 } 2
VaVy {v1v,, 1,05} 2
V4Vs {v1v,, V31, } 2
VaVs {v1v,, v6v7} 2
VeVa {v1v,} 1

Remark 2.3

For a connected graph G, the edge e of G does not belong to the edge fixing edge-to- vertex detour set S(e). Also the
edge fixing edge-to- vertex detour set of an edge e is not unique. For the graph G given in Figure 6.1, the edge fixing
edge-to- vertex detour sets of the edge vivoare {vev-}, {v,v6}.

I11.  SOME RESULTS ON THE EDGE FIXING EDGE-TO-VERTEXDETOURNUMBER OF
A GRAPH

Theorem 2.4
Let e be an edge of G. Let f be a pendant edge of a connected graph Gsuch that e # f. Then every edge fixing edge-
to- vertex detour set of eof G contains f.

Proof. Sincee # f, f is a terminal edge of a detourhence fbelongs to every edge fixing edge-to- vertex detour set
of eofG. ]

Theorem 2.5

Let G be a connected graph and S(e) be an edge fixing edge-to- vertex detour set of eof G. Let f be a non-pendant
cut edge of Gand letG, and G, be the two component of G - {f }. If e = f,then each of the two component of
G - {f} contains an element of S(e). If e =f, then S(e) contains at least one edge of component of G - {f } where e
does not lie.

Proof. Letf = wuwv. Let G,and G, be the two component of G - {f} suchthatu € V(G;)and € V(G,).Lete = f.

Suppose that S(e) does not contain any element of G, ThenS(e) € E(G,).Let h be an edge of E(G,). Then h must
lie on an e- f ‘detourforsome f'eS(e). But such a detour P: v, vi, Va,...,Vi, V, U, U, Uz,..., Us, U, V, V1, Va,..., V' Where

Volume 28, Issue 5, 2025 https://kyupeerref.link Page 12



Bulletin of the Kyushu Institute of Technology - Pure and Applied Mathematics || ISSN 1343-867013

V1, Vg, o, U EV(Gy) , Uy, Uy, ..., Vs EV(Gy) and V' is an end of f' has the cut-edge f twice, hence it is a
contradiction. This proves the theorem.By similar argument, we can prove that if e =f, then S(e) contains at least
one edge from a component of G - {f} where e does not lie. ]

Theorem 2.6
Let G be a connected graph and S(e) be a minimum edge fixing edge-to- vertex detour set of an edge eof G. Then
no non-pendant cut-edge of G belongs to S(e).

Proof.Let S(e) be an edge fixing edge-to- vertex detour set of an edge e = uvof G. Let f = uv’be a non-pendant
cut-edge of G such that f €S(e). Since e =f, let G; and G, be the two component of G - {f} such that u’€ V(G;)
and v’€ V(G,). By Theorem6.5, G; contains an edge xyand G, contains an edge x%’” where xy, xy’eS(e). Let
S1e) = S(e)-{f }. We claim that S '(e) is an edge fixing edge-to- vertex detour set of an edge eof G.

Case 1. Suppose that e = xy is an edge in G; and x%’is an edge in G,. Let h be avertexof G. Assume without
loss of generality that h = wzbelongs to G,. Since uv’is a cut-edge of G, every path joining an edge of G; with an
edge of G, contains the edge u v Suppose that h is adjacent with u v”or the edge xy of S(e) or that lies on a detour
joining xyand u v’ If h is adjacent with uw’ithen z = u’” Let P: x,y,y1,¥2,...,w, z = uheaxy —u'v’ detour.
Let Q:u,viv, vy, ...,x", y auv”-x’y’detour. Then, it is clear that P followed by uv"and Q is a xy-x % ’detour.
Thus h lies on the xy-x%’ detour. If his adjacent with xy, then there is nothing to prove. If h lies on a
xy-x’ydetour, say x,y,vy,V,,...,W,z .., u,v, then let wiviv,,v,,...,y” be uv x%ydetour.
Thenclearlyx,y, vy, va,..., W, 2,..., W,v,v,,0,...,x,y14s a xy-x’y detour. Thus h lies on a detour joiningxyand
an element of S (e). Thus we have proved that an edge that is adjacent with uv’or an edge of S(e) or that lies on a
detour joining xy and uv’of S(e) also is adjacent with an edge of S {e) or lies on a detour joining e and an edge
of S7{e). Hence it follows that S (e) is an edge fixing edge-to- vertex detour set of an edge e of G such that
[S1e)| = [S(e)| - 1, which is a contradiction to the minimality of S(e).

Case 2.Suppose that e = xy € G,.The proof is similar to that of Case 1. Hence the theorem follows. [

Theorem 2.7
For any non-trivial tree T with kend edges,

k-1 ifeisanendedgeof G
defev(G) = . . . .
k if eisaninternal edge of G
Proof. This follows from Theorem 2.4 and Theorem 2. 6. ]
Theorem 2.8

Forthe graph G = C,(p = 4),dcfe,(G) = 1, for any edge e of E(G).

Proof. Let Cy:vy,v,,v3, ..., 1, be the cycle. Let ebe an edge of C,and f be an edge adjacent to e. Then it follows
that {f } is an edge fixing edge-to- vertex detour set of an edge eof C,. Hence defev(Cp) =1. [

Theorem 2.9

For the complete graph K,,(p = 4), dfe,(G) = 1 for every edge in E(G).

Proof. We observe that all the edges of K,,can be considered as the edges of C,and every edge joining the points
of C,. Let ebe an edge of C,and f be an edge adjacent to e. Then it follows that {f } is an edge fixing edge-to-
vertex detour set of an edge e of C, Hence d,.,(K,) = 1.m

Theorem 2.10
Let G be a connected graph with at least three vertices. Then 1 < d,f.,(G) < q — 1.

Proof. For any edge e in G, an edge fixing edge-to-vertex detour set needs at least one edge of G so that

defey(G) = 1. For an edge e € E(G), E(G) - {e} is an edge fixing edge-to-vertex detour set of e of G so that
defer(G) < q — 1. Therefore 1 < df,,(G) < q — 1. -
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Remark 2.11

The bounds in Theorem 2.10 are sharp. For the cycle G = C, (p = 4), for an edge e, any edge which is adjacent
toe is its minimum edge fixing edge-to-vertex detour set of e of G so that d, ., (G) = 1. For the star G = K, 4, for
an edge e, the set of edges E(G) — {e} is the unique edge fixing edge-to-vertex detour set of e of G so that
defen(G) = q— 1. Thus the star K, , has the largest possible edge fixing edge-to-vertex detour number g — 1 and
the cycle G = C, (p = 4), has the smallest edge fixing edge-to-vertex detour number 1. Also the bounds in
Theorem 2.10 is strict. For the graph G given in Figure 2.1, for the edge e = v3v,,def.,(G) = 2 so that 1<

defev(G) <q- 1.

Theorem 2.12
Let G be a connected graph of size g > 3, such that G is neither a star nor a double star. Then df.,,(G) < q — 2 for

every e € E(G).

Proof.
Case 1. Suppose that G is a tree such that Gis neither a star nor a double star. Then by Theorem 2.7,d,.,(G) <

q — 2, foreverye € E(G).
Case 2. Suppose that G is not a tree. Then G contains at least one cycle, say C. Let e be an edge of G

Subcase 2a.Suppose thate € E(C). Then S(e) = E(G)-E(C)is an edge fixing edge-to-vertex detour set of an
edge e of G so that d,f, (G) < q — 2.

Subcase 2b. Suppose thate ¢ E(C). Then setting S(e) = E(G) -E(C) -{e} and by the similar argument in
Subcase2a we can prove that d.r., (G) < q — 2. Hence the proof. [ |

Remark 2.13
The bound in Theorem2.12 is sharp. For the graph G = Cj, it is easily verified that ds.,(G) = q — 2 for every

edge eof G.

Theorem 2.14
Let Gbe a connected graph of size g = 2 and e € E(G). Then d,f.,(G) = q — 1 if and only if e is an edge of K; ,
or e is an internal edge of a double star.

Proof. Let G be a connected graph. If e is an edge of K; 4, then by Theorem 2.7,df.,(G) = q — 1. If e is an
internal edge of a double star, then by Theorem 2.7,d ., (G) = q — 1.

Conversely, let dor.,,(G) = q — 1 for an edge e € E(G). Suppose thateis neither an edge of K; ;nor an internal
edge of a double star. Then by Theorem 2.12,d,s.,,(G) = q — 2, which is a contradiction.Thereforee is an edge of
Ky 4 Or eis an internal edge of a double star.m

Theorem 2.15
Let G be a connected graph with g > 4, which is not a cycle and not a tree and let C(G) be the length of the longest
cycle. Then defe,, (G) < q — C(G) + 1 forsome e € E(G).

Proof. Let C(G) denote the length of the longest cycle in G and C be the cycle of length k.

Let C:vq,v,,v4, ..., v, be acycle, k = 3. Since G is not a cycle, there exists a vertex vin G such that v is not a
vertex of € and which is adjacent to v, say. Let e be an edge of C. Let S(e) = E(G) - {E(C) - e}. Clearly S(e) is
an edge fixing edge-to-vertex detour set of eofG so that d.¢.,(G) < q—C(G) + 1. [

Theorem 2.16
Let G be a connected graph of size ¢ > 3 which is not a double star and d.f,(G) = g — 2for some edge eof G.
Then G is unicyclic.

Proof. Suppose that G is not unicyclic. Then G contains more than one cycle.

Volume 28, Issue 5, 2025 https://kyupeerref.link Page 14



Bulletin of the Kyushu Institute of Technology - Pure and Applied Mathematics || ISSN 1343-867015

Let C; and C, be the two cycles of G. By Theorem 2.15, |C;| = |C,| = 3.

Case 1. Suppose that C; and C,have exactly one vertex, say, vin common.

Lete = uv be an edge of C,and let S(e) = E(G) - E(C) - {e, f}, where f = vw,where w € V(C,).
Then S(e) is an edge fixing edge-to-vertex detour set of an edge e of G so that d,f.,(G) = q — 3, which is a
contradiction.

Case 2.Suppose that C; and C,have a common edge, say, uv.
Let e = uv and let S(e) = E(G) - {e,uw,uz}, where w € V(C,) and z € V(C,). Then S(e) is an edge fixing
edge-to-vertex detour set of eofG so that d,.,(G) = q — 3, which is a contradiction.

Case 3.Suppose that C; and C, are connected by a path P.

Suppose that e = xu be an edge of C,, where x is a vertex common to C; are P and let S(e) =
E(G) -{e,xuy, xxq, f},where xu, € E(C;) such that u#u,,xx; € E(P) and f € E(C,). Then clearly S(e) is an
edge fixing edge-to-vertex detour set of e of G so that d.f.,(G) < q — 4, which is a contradiction. [

Theorem 2.17
For a connected graph G, d,, (G ) < defep (G) + 1.

Proof. Let e be an edge of G and S(e) be the minimum edge fixing edge-to-vertex detour set of eof G. Then
S(e) U {e} is an edge-to-vertex detour set of e of G so that d,(G) < [S(e) U{e}| = defer(G) + 1. ]

Remark 2. 18

The bound in Theorem 2.17 is sharp. For the cycle C,, d.s.,(C,) = 1for every e € E(G) and d,,(G) = 2 so that
dey(G) = defey(G) + 1.Als0 the inequality in the Theorem 2.17 strict. For the graph Ggiven in Figure 2.2, lete =
usuy. Then S(e) = {u u,, uy, ug} is an edge fixing edge-to-vertex detour set of e of G so that d, ., (G) = 2. Also
dey(G) = 2.Hence dg, (G) < defery (G) + 1.
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Theorem 2.19
For positive integers R,Dand [ > 2with R < D < 2R, there exists a connected graph G with rad(G) =
R,diam(G) = D and dgf.,(G) = L forsome e € E(G).

Proof When R =1, we let G = K;;. Then the result follows from Theorem 2.7. Let R>= 2. Let
Cr41: V1, V3, ..., Vgeq bE @ cycle of length R + 1 and let Pp_g: ug, Uy, Uy, ..., up_g be a path of length D - R. Let H
be a graph obtained from Cy,; and P,_g by identifying v, in Cgryq and uyin Py_g. Now add [ - 2 new vertices
Wi, Wy, ..., W;_, to H and join each w; (1 <i <[- 2) to the vertex up_g ; and obtain the graph G as shown in
Figure 2.3. Then rad,p(G) = Rand diamp(G) = D. Let S =
{Up_r_1Up_p,Up_R—1W1, Up_r_1 W3, .., Up_r_1W;_2} be the set of end-edges of G. Let ebe a non-pendant cut edge
of G.By Theorem 2.4, S is a subset of every edge fixing edge-to-vertex detour set of G. It is clear that S is not an
edge fixing edge-to-vertex detour set of G and so d,f.,(G) = . However S U {v,v,} is an edge fixing edge-to-
vertex detour set of e of ¢ and so that d, ¢, (G) = L. ]
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Theorem 2.20
For any positive integer a,1 < a < q - 1, there exists a connected graph G of size g such that d,.,(G) = a, for

some edge e € E(G).
Proof. Let G be a connected graph.

Case l.Leta = q- 1.
For the star G = K 4, by Theorem 6.7,d.f.,(G) = q — 1 = a for every edge e € E(G).

Case2.a =1
Let G be a path of length g and e be an pendant-edge of G. Then by Theorem 2.7, def.,(G) = 1 = a.

Case3.1 <a<gqg-1

Let G be a tree with a end-edges and g - a internal edges and let e be an internal edge of G. Then by Theorem 2.7,
defev(G) =a. | ]

In view of Theorem 2.17, we have the following realization result.

Theorem 2.21
For every pair of positive integers with 2 < a < b, there exists a connected graph G such that d.,(G) = a and
defer(G) = b for some edge e €E(G).

Proof.  Let G be a connected graph.

Casel.a = b
Let G be a double star with a end-edges and let e be the cut-edge of G. Then by Theorem 2.8, d,f.,,(G) = a. Also
by Theorem 1.2, d,,(G) = a.

Case2.2 <a<b

Let P : uy, uy, uz, Uy, Us, Ug, Uy, be a path of order 7. Let P; : x;¥;(1 <i<b-a + 1) be a copy of a path of order
2. Let H be a graph obtained from the path on PandP; by joining u, with each x;(1 <i<b- a + 1) and u,with
y;(1 <i<b-a + 1). Let G be the graph obtained from H by adding new vertices z;, z,, ..., z,_; and joining
each z;(1 <i <a— 1)with u,. The graph G is shown in Figure 2.4. First show that d.,(G) = a. Let S =
{z1u;,Z5u, ..., Zq_ U} be the set of all pendant-edges of G. By Theorem 1.1, S is a subset of every edge-t0-
vertexdetour set of eofG. It is clear that S is not an edge-to-vertex detour set of G and so d,,(G) = a — 1.However
S’ = S U {ugu,} is an edge-to-vertex detour set of G. Thus d,,(G) = a. Let e = uyx;. By Theorem2.4, S =
{z,u,, zyu,, ..., z4_qu;} is a subset of every edge fixing edge-to-vertex detour set of e of G. It is clear that Sis not
an edge fixing edge-to-vertex detour set of eof G. It is easily verified that every edge fixing edge-to-vertex detour set
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of e of Geontains x;y; (2 <i<b-a + 1) and SO dppey(G) =2a-1+ b-a + 1 = b. Let S(e) =S U
{X1Y1, X2Y2, s Xp_a+1, Yb-a +1}- ThENS(e) is an edge fixing edge-to-vertex detour set of e of G so that d,.,,(G)= b.
Hence the proof. [

|

13
G
Figure 2.4
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