
Enhancing Computational Performance through Load Balancing in Parallel and

Distributed Systems
Nguyen Van Tuan1 and Pham Thi Hoa2

1Department of Information Systems, Hanoi University of Science and Technology, Hanoi, Vietnam

2Department of Computer Science, University of Da Nang, Da Nang, Vietnam

ABSTRACT
In computing, load balancing improves the distribution of workloads across multiple computing resources, such

as computers, a computer cluster, network links, central processing units, or disk drives.Load balancing aims to

optimize resource use, maximize throughput, minimize response time, and avoid overload of any single

resource.Parallel computing is a type of computation in which many calculations or the execution

of processes are carried out simultaneously. Large problems can often be divided into smaller ones, which can

then be solved at the same time.

Keywords: Distributed Computing,Distributed Programming,parallel computing ,load balancing,client-server

load balancing .

I. INTRODUCTION
Using multiple components with load balancing instead of a single component may increase reliability and

availability through redundancy. Load balancing usually involves dedicated software or hardware, such as

a multilayer switch or a Domain Name System server process.

Load balancing differs from channel bonding in that load balancing divides traffic between network interfaces

on a network socket (OSI model layer 4) basis, while channel bonding implies a division of traffic between

physical interfaces at a lower level, either per packet (OSI model Layer 3) or on a data link (OSI modelLayer 2)

basis with a protocol like shortest path bridging.

Parallel computing

There are several different forms of parallel computing: bit-level, instruction-level, data, and task parallelism.

Parallelism has long been employed in high-performance computing, but it's gaining broader interest due to the

physical constraints preventing frequency scaling.[2] As power consumption (and consequently heat generation)

by computers has become a concern in recent years,[3] parallel computing has become the dominant paradigm

in computer architecture, mainly in the form of multi-core processors.[4]

Parallel computing is closely related to concurrent computing—they are frequently used together, and often

conflated, though the two are distinct: it is possible to have parallelism without concurrency (such as bit-level

parallelism), and concurrency without parallelism (such as multitasking by time-sharing on a single-core

CPU).[5][6] In parallel computing, a computational task is typically broken down into several, often many, very

similar subtasks that can be processed independently and whose results are combined afterwards, upon

completion. In contrast, in concurrent computing, the various processes often do not address related tasks; when

they do, as is typical in distributed computing, the separate tasks may have a varied nature and often require

some inter-process communicationduring execution.

Parallel computers can be roughly classified according to the level at which the hardware supports parallelism,

with multi-core and multi-processor computers having multiple processing elements within a single machine,

while clusters, MPPs, and grids use multiple computers to work on the same task. Specialized parallel computer

architectures are sometimes used alongside traditional processors, for accelerating specific tasks.

In some cases parallelism is transparent to the programmer, such as in bit-level or instruction-level parallelism,

but explicitly parallel algorithms, particularly those that use concurrency, are more difficult to write than

sequential ones,[7] because concurrency introduces several new classes of potential software bugs, of which race

conditions are the most common. Communication and synchronization between the different subtasks are

typically some of the greatest obstacles to getting good parallel program performance.

Bulletin of the Kyushu Institute of Technology - Pure and Applied Mathematics || ISSN 1343-867017

Volume 27, Issue 2, 2024 https://kyupeerref.link Page 17

https://en.wikipedia.org/wiki/Computing
https://en.wikipedia.org/wiki/Workload
https://en.wikipedia.org/wiki/Computer_cluster
https://en.wikipedia.org/wiki/Computer_network
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Disk_drives
https://en.wikipedia.org/wiki/Throughput
https://en.wikipedia.org/wiki/Computing
https://en.wikipedia.org/wiki/Process_(computing)
https://en.wikipedia.org/wiki/Redundancy_(engineering)
https://en.wikipedia.org/wiki/Multilayer_switch#Layer_4_Load_Balancer
https://en.wikipedia.org/wiki/Domain_Name_System
https://en.wikipedia.org/wiki/Channel_bonding
https://en.wikipedia.org/wiki/Network_socket
https://en.wikipedia.org/wiki/OSI_model
https://en.wikipedia.org/wiki/OSI_model
https://en.wikipedia.org/wiki/OSI_model
https://en.wikipedia.org/wiki/Shortest_path_bridging
https://en.wikipedia.org/wiki/Bit-level_parallelism
https://en.wikipedia.org/wiki/Instruction-level_parallelism
https://en.wikipedia.org/wiki/Data_parallelism
https://en.wikipedia.org/wiki/Task_parallelism
https://en.wikipedia.org/wiki/High_performance_computing
https://en.wikipedia.org/wiki/Frequency_scaling
https://en.wikipedia.org/wiki/Parallel_computing#cite_note-2
https://en.wikipedia.org/wiki/Parallel_computing#cite_note-3
https://en.wikipedia.org/wiki/Computer_architecture
https://en.wikipedia.org/wiki/Multi-core_processor
https://en.wikipedia.org/wiki/Parallel_computing#cite_note-View-Power-4
https://en.wikipedia.org/wiki/Concurrent_computing
https://en.wikipedia.org/wiki/Bit-level_parallelism
https://en.wikipedia.org/wiki/Bit-level_parallelism
https://en.wikipedia.org/wiki/Time-sharing
https://en.wikipedia.org/wiki/Parallel_computing#cite_note-waza-5
https://en.wikipedia.org/wiki/Parallel_computing#cite_note-waza-5
https://en.wikipedia.org/wiki/Distributed_computing
https://en.wikipedia.org/wiki/Inter-process_communication
https://en.wikipedia.org/wiki/Multi-core
https://en.wikipedia.org/wiki/Symmetric_multiprocessing
https://en.wikipedia.org/wiki/Processing_element
https://en.wikipedia.org/wiki/Computer_cluster
https://en.wikipedia.org/wiki/Massively_parallel_(computing)
https://en.wikipedia.org/wiki/Grid_computing
https://en.wikipedia.org/wiki/Parallel_algorithm
https://en.wikipedia.org/wiki/Parallel_computing#cite_note-7
https://en.wikipedia.org/wiki/Software_bug
https://en.wikipedia.org/wiki/Race_condition
https://en.wikipedia.org/wiki/Race_condition
https://en.wikipedia.org/wiki/Computer_networking
https://en.wikipedia.org/wiki/Synchronization_(computer_science)

Figure2: Userrequests to the Wikimedia Elasticsearch server cluster are routed via load balancing

Tables:

Internet-based services:One of the most commonly used applications of load balancing is to provide a

single Internet service from multiple servers, sometimes known as a server farm. Commonly load-balanced

systems include popular web sites, large Internet Relay Chat networks, high-bandwidth File Transfer

Protocol sites, Network News Transfer Protocol (NNTP) servers, Domain Name System (DNS) servers, and

databases.

Round-robin DNS: An alternate method of load balancing, which does not require a dedicated software or

hardware node, is called round robin DNS. In this technique, multiple IP addresses are associated with a

single domain name; clients are given IP in round robin fashion. IP is assigned to clients for a

time quantum.

DNS delegation : Another more effective technique for load-balancing using DNS is to

delegate www.example.org as a sub-domain whose zone is served by each of the same servers that are serving

the web site. This technique works particularly well where individual servers are spread geographically on

the Internet. For example:

one.example.org A 192.0.2.1

two.example.org A 203.0.113.2

www.example.org NS one.example.org

www.example.org NS two.example.org

Bulletin of the Kyushu Institute of Technology - Pure and Applied Mathematics || ISSN 1343-867018

Volume 27, Issue 2, 2024 https://kyupeerref.link Page 18

https://en.wikipedia.org/wiki/Elasticsearch
https://en.wikipedia.org/wiki/Server_(computing)
https://en.wikipedia.org/wiki/Server_farm
https://en.wikipedia.org/wiki/Web_site
https://en.wikipedia.org/wiki/Internet_Relay_Chat
https://en.wikipedia.org/wiki/File_Transfer_Protocol
https://en.wikipedia.org/wiki/File_Transfer_Protocol
https://en.wikipedia.org/wiki/Network_News_Transfer_Protocol
https://en.wikipedia.org/wiki/Domain_Name_System
https://en.wikipedia.org/wiki/Round_robin_DNS
https://en.wikipedia.org/wiki/IP_address
https://en.wikipedia.org/wiki/Domain_name
https://en.wikipedia.org/wiki/Quantum

However, the zone file for www.example.org on each server is different such that each server resolves its own

IP Address as the A-record.[2] On server one the zone file for www.example.org reports:

@ in a 192.0.2.1

On server two the same zone file contains:

This way, when a server is down, its DNS will not respond and the web service does not receive any traffic. If

the line to one server is congested, the unreliability of DNS ensures less HTTP traffic reaches that server.

Furthermore, the quickest DNS response to the resolver is nearly always the one from the network's closest

server, ensuring geo-sensitive load-balancing. A short TTL on the A-record helps to ensure traffic is quickly

diverted when a server goes down. Consideration must be given the possibility that this technique may cause

individual clients to switch between individual servers in mid-session.

Client-side random load balancing

Another approach to load balancing is to deliver a list of server IPs to the client, and then to have client

randomly select the IP from the list on each connection. This essentially relies on all clients generating similar

loads, and the Law of Large Numbers to achieve a reasonably flat load distribution across servers. It has been

claimed that client-side random load balancing tends to provide better load distribution than round-robin DNS;

this has been attributed to caching issues with round-robin DNS, that in case of large DNS caching servers, tend

to skew the distribution for round-robin DNS, while client-side random selection remains unaffected regardless

of DNS caching.

With this approach, the method of delivery of list of IPs to the client can vary, and may be implemented as a

DNS list (delivered to all the clients without any round-robin), or via hardcoding it to the list. If a "smart client"

is used, detecting that randomly selected server is down and connecting randomly again, it also provides fault

tolerance.

Server-side load balancers

For Internet services, server-side load balancer is usually a software program that is listening on the port where

external clients connect to access services. The load balancer forwards requests to one of the "backend" servers,

which usually replies to the load balancer. This allows the load balancer to reply to the client without the client

ever knowing about the internal separation of functions. It also prevents clients from contacting back-end

servers directly, which may have security benefits by hiding the structure of the internal network and preventing

attacks on the kernel's network stack or unrelated services running on other ports.

Some load balancers provide a mechanism for doing something special in the event that all backend servers are

unavailable. This might include forwarding to a backup load balancer, or displaying a message regarding the

outage.

It is also important that the load balancer itself does not become a single point of failure. Usually load balancers

are implemented in high-availability pairs which may also replicate session persistence data if required by the

specific application.

Scheduling algorithms

Numerous scheduling algorithms, also called load-balancing methods, are used by load balancers to determine

which back-end server to send a request to.[6] Simple algorithms include random choice or round robin. More

sophisticated load balancers may take additional factors into account, such as a server's reported load, least

response times, up/down status (determined by a monitoring poll of some kind), number of active connections,

geographic location, capabilities, or how much traffic it has recently been assigned.

Load balancer features

The fundamental feature of a load balancer is to be able to distribute incoming requests over a number of

backend servers in the cluster according to a scheduling algorithm. Most of the following features are vendor

specific:

Asymmetric load: A ratio can be manually assigned to cause some backend servers to get a greater share of the

workload than others. This is sometimes used as a crude way to account for some servers having more capacity

than others and may not always work as desired.

Bulletin of the Kyushu Institute of Technology - Pure and Applied Mathematics || ISSN 1343-867019

Volume 27, Issue 2, 2024 https://kyupeerref.link Page 19

https://en.wikipedia.org/wiki/Load_balancing_(computing)#cite_note-2
https://en.wikipedia.org/wiki/Time_to_live
https://en.wikipedia.org/wiki/Law_of_Large_Numbers
https://en.wikipedia.org/wiki/TCP_and_UDP_port
https://en.wikipedia.org/wiki/Single_point_of_failure
https://en.wikipedia.org/wiki/High_availability
https://en.wikipedia.org/wiki/Scheduling_algorithm
https://en.wikipedia.org/wiki/Load_balancing_(computing)#cite_note-6
https://en.wikipedia.org/wiki/Round-robin_scheduling

Priority activation: When the number of available servers drops below a certain number, or load gets too high,

standby servers can be brought online.

Figures and tables

Table 1:Difference between

Figure 4:Showing the difference between Paralell and Distributed systems

Bulletin of the Kyushu Institute of Technology - Pure and Applied Mathematics || ISSN 1343-867020

Volume 27, Issue 2, 2024 https://kyupeerref.link Page 20

Figure 5:Graph Respresentation

II. CONCLUSION
Using multiple components with load balancing instead of a single component may increase reliability and

availability through redundancy. Load balancing usually involves dedicated software or hardware, such as

a multilayer switch or a Domain Name System server process. Priority activation: When the number of available

servers drops below a certain number, or load gets too high, standby servers can be brought online

III. REFERENCES
1. Andrews, Gregory R. (2000), Foundations of Multithreaded, Parallel, and Distributed Programming,

Addison–Wesley,ISBN 0-201-35752-6.

2. Gottlieb, Allan; Almasi, George S. (1989). Highly parallel computing. Redwood City, Calif.:

Benjamin/Cummings. ISBN 0-8053-0177-1.

Bulletin of the Kyushu Institute of Technology - Pure and Applied Mathematics || ISSN 1343-867021

Volume 27, Issue 2, 2024 https://kyupeerref.link Page 21

https://en.wikipedia.org/wiki/Redundancy_(engineering)
https://en.wikipedia.org/wiki/Multilayer_switch#Layer_4_Load_Balancer
https://en.wikipedia.org/wiki/Domain_Name_System

