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Abstract 

A detailed survey of the use of many deep learning algorithms on scRNAseq data for 

regenerative medicine was published in this article. Currently, the best deep learning 

algorithms for scRNAseq analysis have yielded positive results, but there are still more 

promising ways that need to be developed to better handle technical noise, account for cell 

expression variability, identify MSCs, and anticipate stem cell type. To gain access to 

scRNAseq data, these deep learning techniques need to be paired with scRNAseq data. The 

ability to identify cell types and functions accurately and fast utilizing these algorithms has not 

yet been made possible. In the study we conducted, we reached the conclusion that further 

research has to be done into how to apply deep learning algorithms to interpret scRNAseq data, 

which may be used to better cell therapy and regenerative medicine efforts. 
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1 INTRODUCTION 

The goal of regenerative medicine is to replace nonfunctional or dead cells in order to heal or 

regenerate tissues and organs, restoring normal function to damaged organs. The use of stem 

cell transplantation and tissue regeneration procedures in the treatment of various illnesses has 

expanded dramatically in recent years. 1 

With the advancements in stem cell research, cell therapy, the therapeutic approach of 

introducing new cells into a tissue to treat illnesses, may be able to cure diseases that are 

resistant to standard treatments. Stem cells are self-renewing and have the ability to develop 

into a variety of human body cells. As a result, stem cell treatments may have an impact on the 

area of regenerative medicine. However, contemporary approaches for using stem cells in 

regenerative medicine and cell therapy are still in their infancy, and most of what is known 

about the subject is speculative. The regeneration mechanism of transplanted mesenchymal 

stem cells (MSCs) against illnesses, for example, remains unknown. Furthermore, parameters 

such as tissue source and separation procedure have an impact on MSC differentiation capacity. 

2 and 3 There is no agreement on the conventional features of MSC differentiation potential at 

this time. Because of these ambiguities, we have been unable to evaluate the effectiveness and 

self-renewal capability of isolated MSC, implying that MSC usage will give results that are 

entirely different or nearly contrary to the intended value of clinical applications. It is more 

reliable to identify cell types in stem cells using genomics approaches, such as relying on single 

cell RNA sequencing (scRNAseq) data to assess and assess gene expression patterns or 

quantify protein content. As a result, we anticipate that deep learning approaches may be used 

to evaluate scRNAseq data, forecast cell types, and get a better understanding of MSC 

differentiation potential and direction. We can directly use stem cell subpopulations with the 

required differentiation direction for treatment if we can determine what type of cells they can 

differentiate into before using MSCs, allowing us to treat diseases more directly and achieve 

precision medical treatment, promoting the development of cell therapy and regenerative 

medicine. 

Our research group has focused on musculoskeletal illness therapies, particularly tendon tissue 

regeneration techniques including biomaterials, stem cells, and growth factor delivery systems. 

We believe ourselves to be a well-established group in the field of tendon tissue engineering 

and regeneration, including publications on the use of stem cells and biomaterials in tendon 

tissue engineering. We propose that machine learning approaches such as deep learning be used 

to examine the scRNAseq data set and generate predictions about hidden subpopulations in the 

cell population. This allows researchers to accurately analyze MSCs and employ the 

subpopulations identified based on differentiation potential for stem cell therapy and 

regenerative medicine treatments. 

The previously published remarks mainly describe the use of machine learning techniques on 

genomics data,4-9, or the use of more specialized machine learning techniques on scRNAseq 

data,10-12, or the use of deep learning methods on genomics data. 
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This review summarized the various algorithms of deep learning methods applied to scRNAseq 

data in this review, discussed the impact of their combination on the development of stem cell 

therapy and regenerative medicine, and proposed additional algorithmic suggestions for future 

cell therapy development. 

2 scRNAseq INTRODUCTION 

Previously, people analyzed the whole genome sequence information of mixed DNA samples 

of millions or more of cells, and the result was usually only the average value of the signals in 

a certain group of cells or the most dominant cells, ignoring the characteristics of a single cell 

or a small subset of cells. For example, if we wish to analyze a specific tissue using whole 

genome sequence information in the hopes of finding a small number of altered cells (perhaps 

early cancer cells), it will be very difficult since the features of a small number of cells would 

be overlooked. 

However, single-cell sequencing technologies can help to overcome this issue. The Singlecell 

sequencing technique is more precise than typical whole genome sequencing technology, 

especially at the level of gene expression. Furthermore, single-cell sequencing can discover a 

small quantity of gene expression or other uncommon RNA. The Singlecell sequencing 

technique produces omnidirectional and multilayer results, which greatly aids our knowledge 

of cells, tissues, and human systems. 

ScRNAseq revolutionized transcriptome research. Andrews and Hemberg compiled a list of 

single-cell isolation procedures and scRNAseq approaches that are now accessible, including 

quality control, dimensionality reduction, cell clustering, trajectory inference, gene regulatory 

network reconstruction, and so on, in 2018. 15 

At the moment, scientists have proposed a number of ways to reveal the spatial structure of 

cells by combining single-cell transcriptomics with spatial transcriptomics. Moncada et al 

presented a technique for multimodal intersection analysis by combining the two omics 

mentioned above. 16 They discovered that using this strategy, they can map cell types, cell 

subgroups, and even cell states in space. Peng et al. have published a review on the use of 

scRNAseq and spatial transcriptomics to better understand stem cell lineage features 

throughout early embryonic development. 17 

scRNAseq data, on the other hand, contains more noise and greater dimensions than bulk 

RNAseq data and is more complicated due to technological restrictions and biological 

considerations. As a result, many strategies for assessing bulk RNAseq data are ineffective 

when applied to scRNAseq data. To evaluate the scRNAseq data, users must either develop the 

algorithm or tweak the current method. As a result, various methods for analyzing and 

interpreting scRNAseq data have been developed in recent years, but the findings show that 

unique techniques are still needed to assure the accuracy and repeatability of the results, and 

deep learning will be a viable choice. From the standpoint of applying deep learning algorithms 

to scRNAseq data, this review will examine the influence of deep learning on stem cell 

treatment and regenerative medicine. 
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3 DEEP LEARNING TECHNOLOGIES INTRODUCTION 

Machine learning is a technique for predicting unknown facts by automatically analyzing and 

extracting laws from data. The appeal of bioinformatics resides in their capacity to forecast 

models without a thorough knowledge of the model's core process, which is obviously 

appealing to most biologists who are not mathematicians. Machine learning technologies, such 

as t distributed stochastic neighbor embedding (tSNE) and high-latitude data visualizations18, 

provide analytic approaches for genomics, proteomics, and metabolomics, among other fields. 

Extracting, converting, and loading source data; data preprocessing; feature extraction; model 

training; cross validation; fresh data prediction are the six processes in a typical machine 

learning workflow. Typically, the input data sample is assigned to x (perhaps a vector), and the 

output data sample is assigned to y. (maybe a single number). 

The standard procedure for machine learning 

Machine learning algorithms, unlike previous algorithms that need domain expertise and 

stringent model assumptions, can automatically discover data and anticipate model structure. 

As a result, machine learning techniques are well suited to data-driven science, particularly in 

genomics. 5 The ability of machine learning algorithms is primarily determined by how each 

feature is captured or calculated. 14 

Artificial neural networks research gave rise to the notion of deep learning. A deep learning 

structure is a multilayer perceptron with numerous hidden layers. By integrating low-level 

features to identify dispersed feature representations of data, deep learning creates a more 

abstract high-level representation of attribute category or feature. Convolutional neural 

networks (CNN) and deep belief networks are two types of deep learning technologies (DBN). 

CNN can readily extract certain local relevance characteristics using convolution kernels, is 

adaptable to data transformations, and has a generally positive effect on pictures. The CNN 

algorithm may be used to improve the accuracy of segmentation of cell pictures. 19 CNN may 

also be used in conjunction with scRNAseq data to infer gene relationships. 20 DBN is based 

on Bayesian reasoning and finds the joint probability distribution of the data to automatically 

retrieve the high-level information concealed in the data that is difficult to explain. Its output 

information gives the data a distinct personality. Based on the DBN framework, Chen et al 

built a Bayesian network model for the interaction between distinct histone modifications 

across neighboring nucleosomes. It was discovered that nucleosome communication plays a 

key role in signal propagation, chromatin remodeling, and transcriptional control. 21 Deep 

learning's application in DNA sequence data was also demonstrated in a groundbreaking study 

in 2015. 22 Since then, the number of studies relating to deep learning's application in genomics 

has risen. The use of deep learning to scRNAseq data will be discussed in this paper. 
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4 DISCUSSION 

All genes are included in the scRNAseq findings, which are valuable for cell and tissue 

analysis. Machine learning approaches are now commonly utilized to evaluate scRNAseq 

data15, such as recognizing cells, detecting novel cell kinds, and generating pedigree trees. 

However, when studying various sorts of data sets, the explanations and answers provided by 

these approaches are not always sufficient, and there is presently no approach that can be used 

to analyze all distinct sorts of cells. Furthermore, the dimensionality of the collected data is 

increasing as a result of the in-depth investigation of the cells. Ordinary machine learning 

algorithms are unable to tackle difficulties created by high dimensions, and forced 

dimensionality reduction will result in data loss. Then deep learning entered the picture. Deep 

learning, for example, can analyze high-dimensional data without losing data information by 

using tensors (various directions in the tensor represent various data kinds). 

Deep learning technology, as we all know, is very scalable and can predict unknown variables 

based on provided data, which is very useful in the field of single-cell genomics. For example, 

with an existing single cell type database of a certain organization, one may train and obtain a 

model, and then forecast if an unknown cell belongs to the tissue or which cell type in the 

tissue. This is critical for the successful implementation of stem cell treatment. 

Deep learning may also be used for unsupervised learning. They learn from unlabeled 

scRNAseq data to provide a data-driven definition of cell kind and identity. This is useful for 

studying data sets where labels are difficult to come by. Unsupervised algorithms may also be 

utilized to combine scRNAseq data from diverse sources, according to Shaham et al.23. 25, 24 

The constant expansion of similar tissue data sets, as we know from the "Human Cell Atlas 

Project," 26 makes this more and more significant, which is critical for the fulfillment of stem 

cell treatment applications. Despite the capability of scRNAseq, single-cell sequencing data is 

sometimes plagued by issues such as excessive deletion and noise. The transcript will be lost 

during the reverse transcription process due to the tiny number. As a result of this condition, 

"dropout" occurrences occurred. According to Kharchenko et al, just a tiny portion of each 

cell's transcriptome was recognized during the sequencing step,27 and these issues will result 

in a sparse gene expression matrix. This is a typical issue with lowly expressed genes. However, 

omitting these genes from the study completely isn't the most effective strategy. This method 

would squander much too much valuable data, such as transcription factors and surface 

indicators. 

As a result, more effective attribution procedures are needed to recover the lost gene expression 

in the scRNAseq data set in order to acquire more exact gene expression measurement findings. 

Many approaches for attributing scRNAseq data have been proposed earlier, according to 

Arisdakessian et al, including MAGIC,29 ScImpute,30 SAVER,31 and DrImpute. 32 

However, these approaches take a long time to execute, which makes them unsuitable for use 

in the ever-expanding scRNAseq data set. 
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Then, Arisdakessian et al presented DeepImpute, a deep neural network-based interpolation 

technique that employs a dropout layer and loss function to learn data patterns for interpolation. 

28 This strategy minimizes complexity by breaking down issues into smaller chunks and 

finetuning the subneural network, or by building many subneural networks to estimate genes 

in a divide-and-conquer approach. In their paper, Arisdakessian et al claimed that if accuracy 

is measured using Pearson's correlation coefficient or mean square error, DeepImpute is more 

accurate on experimental data than many other scRNAseq interpolation methods (such as 

SAVER, MAGIC, VIPER, and DCA), and DeepImpute is faster and uses less memory than 

those methods. 28 

Arisdakessian et al used four publicly accessible scRNAseq data sets to demonstrate the 

benefits of DeepImpute: two cell lines, Jurkat and 293T (10X Genomic); one mouse 

interfollicular epidermis data set released in GSE67602; and one mouse neuron cell data set 

(10X Genomic). 28 Simultaneously, they hypothesized that the DeepImpute approach may do 

cluster analysis or differential expression (DE) analysis on actual or simulated data sets, hence 

improving downstream analysis outcomes. In sum, Arisdakessian et al think that DeepImpute 

is suited for processing the ever-increasing number of interpolation techniques for scRNAseq 

data because of its accuracy, speed, and scalability. 

In comparison to the DeepImpute approach, Mongia et al introduced deepMc, a deep matrix 

factorization-based attribution system. 33 The deepMc approach makes no assumptions about 

the distribution of gene expression. A matrix is used to generate a depth model and then 

decomposed into several matrices for further analysis using matrix decomposition or kernel 

specification minimization. This approach adds to the variety of interpolation problem-solving 

options. DeepMc does not require any hyperparameters; all it requires is a parameter that may 

also pass the estimated theory.This is in stark contrast to conventional deep learning models, 

which need a significant amount of effort to fine-tune parameters. Mongia et al. demonstrated 

that the deepMc approach outperforms the DeepImpute attribution technique in the majority of 

testing scenarios.We all know that one of the most important uses of scRNAseq is to discover 

distinct cell types from diverse cell populations, so the two can be compared based on the 

clustering accuracy obtained after imputation.DeepMc has a substantially greater accuracy than 

DeepImpute in terms of the Adjusted Rand Index value achieved after using kmeans clustering 

following various interpolation approaches. 33 Second, they evaluated the accuracy of DE 

analysis to compare the two approaches. They employed the receiver's operating characteristic 

curve's area under the curve value, and deepMc is more accurate than DeepImpute. 

Furthermore, starting with cell type separability (CTS). 

As a result, the deepMc approach may be recommended while tackling the interpolation 

problem of restoring lost gene expression. Of course, the DeepImpute technique offers 

advantages of its own. 

Data from single-cell transcriptomes can reveal previously unknown biodiversity. In practice, 

numerous studies are required to fully utilize the scRNAseq technique in order to determine 

cell lineages and real transcription signals. We must employ various strategies to adjust the 

batch effect in the scRNAseq data due to the combined data. 
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ScVI may be used to standardize and evaluate scRNAseq data since it is a completely 

probabilistic approach based on probability Bayesian theory and establishing conditional 

distributions using deep neural networks. 24 To gather information between comparable cells 

and genes, this technique uses deep neural networks and random optimization. It takes into 

account not just the data's sensitivity, but also the effects of batch processing, allowing the 

findings to more accurately approximate the distribution of observed expression levels. scVI 

delivers great accuracy in batch effect correction, cell clustering, differential expression, and 

other areas. 24 After using the scVI technique for clustering, it was discovered that the 

subgroups that were previously "hidden" owing to the clustering method's inaccuracy, scVI 

and other techniques (SIMLR,23 MNNs34 [Mutual Nearest Neighbor] + PCA [Principal 

Components Analysis]) had been annotated. 10 On the above-mentioned data set, a cell 

clustering analysis was done. The results reveal that scVI can capture the hierarchical structure 

between cell subsets more precisely and uncover cell subsets that are "hidden groups" for other 

approaches. Similarly, we can identify what sorts of cells the stem cells can develop into before 

utilizing them if we learn from the stem cell data set and then apply the learned model to the 

unknown group of stem cells. As a result, stem cell subsets with the needed differentiation 

direction may be employed for treatment directly, allowing for more direct treatment of 

illnesses, precision medicine, and the advancement of cell therapy and regenerative medicine. 

BERMUDA (using deep autoencoders for batch effect removal) is a new approach for 

correcting batch effects in scRNAseq data based on transfer learning. 35 The "domain adaptive 

learning" approach is used to translate the original data to the new feature space (in the target 

domain) by picking an appropriate feature representation, ensuring that the distribution of the 

source domain and the target domain in the new feature space are as similar as feasible. 

BERMUDA can cluster the cells and remove the errors produced by the batch effect. When a 

clustering mistake occurs, cells from the acinar group, for example, are associated with cells 

from the endothelial group. The analysis that follows will be altered as well. There might be a 

significant disconnect, if not outright disagreement, between the connection with the real cells. 

Wang et al demonstrated that BERMUDA outperforms scVI in handling batch effects on 

publically accessible human pancreatic datasets obtained using various scRNAseq techniques. 

35 They assess BERMUDA using biological data. They tested it on datasets from the human 

pancreas obtained using several scRNAseq techniques that are publically available. "Muraro 

batch" 36 is one data set, whereas "Baron batch" is another. 37 To imitate the significant 

disparities in cell type distribution reported in true scRNAseq data, they utilized all of the cells 

from these two batches and then removed alpha and beta cells from the Baron group. 

Batch effects in pancreatic cell scRNAseq data are removed. Experiment all on pancreatic data 

set UMAP (Uniform Manifold Approximation and Projection) representations of batch effect 

reduction outcomes. Dashed circles indicate identified alpha and beta cell subpopulations in 

the Baron batch. With permission from Genome Biology, reprinted from Wang et al35. 

singlecell RNA sequencing (scRNAseq) 
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When just batch effects are selected, the BERMUDA technique is better suited, as seen in the 

above comparison. scVI is, of course, a fantastic candidate for other downstream analyses as 

well. 

To find the optimum batch corrector space, scVI mostly depends on similarities between 

individual cells, and these similarities do not fully use the clustering structure of distinct cell 

populations. To eliminate batch effects, BERMUDA employs data similarity between cell 

clusters. Because clustering and batch effect removal are linked, the best batch effect 

elimination approach should be used in conjunction with clustering. It's also envisaged that 

there will be a means to analyze all batches of cells at the same time. For scRNAseq analysis, 

Li et al presented the DESC technique, which is an unsupervised deep learning system that can 

iteratively learn clusterspecific gene expression representations and cluster assignments. 38 

DESC will gradually reduce batch effects in iterations as long as the technical difference 

between batches is lower than the genuine biological difference (e.g., the difference between 

cell types). DESC provides a greater and more stable clustering accuracy than the scVI and 

BERMUDA approaches. 

Furthermore, scAlign39 is an unsupervised deep learning approach for cell label sets that can 

combine partial, overlapping, or complete cell label sets and estimate the per-cell gene 

expression differential across the full data set. 

ScAlign conducts unit comparison in a single data set by learning a two-way mapping (between 

the low-dimensional comparison space and the sorting unit). Then, in the low-dimensional 

comparison space, scAlign completes the grouping of units by function and type. This allows 

for the correct marking of fresh data sets that lack annotation labels, as well as the detection of 

unusual cell populations. ScAlign's neural network design helps it and allows it to increase its 

alignment capabilities. 39 scAlign outperforms existing comparison approaches such as 

scmap,40, scVI,24, and Seurat, according to Johansen and Quon. 41 

We can better perform downstream analysis on the scRNAseq data, complete cell 

categorization, and uncover novel cell subgroups after correcting the batch effect in the 

scRNAseq data. When utilized in a variety of fundamental analytical tasks, such as batch 

correction, visualization, grouping, and differential expression, scVI has demonstrated great 

accuracy. 24 This enables us to better define the sorts of stem cells that will be employed in 

clinical trials, as well as the types of cells that they can develop into and the stem cell subgroups 

that have differentiation potential. It is critical that we deploy stem cell treatment in clinical 

settings and achieve the intended outcomes. We expect that combining deep learning and 

scRNAseq data can enhance cell therapy and regenerative medicine implementation, as well 

as affect precision medicine implementation. 

Of course, the deep learning method can not only remove the batch effect in scRNAseq data or 

complete cell clustering, but it can also learn the data's inherent biological modules, describe 

the biologically meaningful control data set modules, and provide information about which 

modules are active for each unit.  
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The autoencoder, for example, after deconvolution processing,42 It also adapts well to a 

significant amount of "lost" data, which is valuable and crucial for processing scRNAseq data. 

Following deconvolution of the resultant model, Kinalis et al discovered that the autoencoder 

may build a relationship between the model's presentation layer and biological processes after 

specialized training. The autoencoder completes the signature decryption of genes or places by 

mapping the hidden cells in the model to well-defined modules, allowing the autoencoder to 

better delineate the driving mechanisms behind a specific cellular impact. 42 This will allow 

us to look at the stem cell population from a different perspective, allowing us to screen the 

subpopulations of stem cells we require and driving the development of stem cell therapy. 

The algorithms listed below have aided in the advancement of stem cell treatment in some way. 

They don't utilize scRNAseq to cluster cells directly; instead, they look at cells from several 

angles, such as cell contact, quantification of certain subgroups, and tissue dependant status, or 

predicting the abundance of surface proteins on the scRNAseq data set. 

The CNNC algorithm was proposed by Yuan and BarJoseph. 20 They analyze the scRNAseq 

data using the CNN method, which can conduct causal inference, illness gene prediction, 

function allocation, and other operations on the data. Because CNN can readily extract some 

local related features using the convolution kernel, which has a stronger influence on the 

picture, this approach turns expression data that lacks locality into an image for later 

processing. The technique then uses a supervised methodology to make genetic connection 

inferences. To use CNNC, Yuan and BarJoseph employed a significant quantity of single cell 

expression data and tested it on a variety of inference tasks. In terms of inferring function 

allocation, gene interaction, and causality inference, they found that CNNC outperforms earlier 

techniques (DNN, count statistics, mutual information). 

Furthermore, DigitalDLSorter is a deep learning algorithm that can forecast the fraction of each 

cell type in a huge number of RNA sequencing data. 43-267 The immunological infiltration of 

colorectal cancer and breast cancer in bulk RNASeq samples is enumerated and quantified 

using scRNAseq data. It adjusts the composition of any cell type specified based on scRNAseq 

data using a deep neural network (DNN) model, allowing it to measure not just traditional cell 

categories like lymphocytes, but also particular subgroups and tissue-dependent states. It 

differs from the previous technique in that it takes into account the microenvironment's effect 

on the transcriptome. The physiological status of cells will be more precisely quantified and 

defined as a result of this. When we employ stem cell treatment, this introduces new 

considerations. 

You may utilize a deep neural network-based transfer learning algorithm, cTPnet,44 to use 

existing single-cell multiomics resources to predict the surface protein abundance of scRNAseq 

data in addition to assessing cell information from scRNAseq data alone. The results of Zhou 

et al indicate that cTPnet can predict the abundance of surface proteins on the scRNAseq data 

set using the REAPseq and CITEseq data sets, as well as the absence of cell type data in the 

training data set, using the REAPseq and CITEseq data sets. 44 Furthermore, cTPnet can learn 

from healthy cells and then infer the immunological profile of malignant cells, which is critical 

for our stem cell treatment prediction. 
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The increased use of scRNAseq technology has given us a better knowledge of cell 

heterogeneity at the transcriptional level, and it has transformed the way individuals evaluate 

and extract meaningful information from bulk RNA. Despite the high expense of scRNAseq, 

we can extract a lot of useful information from scRNAseq data. This data is extensive and 

multilayered, allowing us to gain a thorough understanding of cells, tissues, and human bodies. 

Now, researchers frequently employ various approaches to reanalyze the published data set in 

order to verify the algorithm's correctness or to identify previously overlooked information in 

the published data set using a validated new technique. However, evaluating scRNAseq data is 

difficult in general since the data is noisy, has a high dimensionality, and has high variability, 

and there is no difference when evaluating it. As a result, users must select an appropriate tool 

for analysis based on the nature and distribution of their input data collection, as well as the 

study's unique aim. 

Deep learning algorithms are unquestionably a suitable choice for analyzing scRNAseq data 

since they can handle high-dimensional data well. Because scRNAseq data includes the 

genome derived from the same cell, the appearance group, and transcriptome and proteome 

data, deep learning methods have a number of benefits. For example, endtoend learning may 

enhance prediction accuracy, and it can also efficiently analyze multipeak data. Multimodal 

modeling allows for the examination of several data sources, resulting in a more complete and 

precise trained model. People will be able to combine scRNAseq data with spatial 

transcriptomic data in the future to understand cellular information in a multidimensional 

fashion using deep learning. Furthermore, by abstracting many mathematical and technological 

elements, the deep learning framework lowers the entry barriers for constructing new models. 

This is due to the fact that most biomedical researchers do not have enough time to understand 

mathematics or computer science theory, let alone build or construct a new model.Using the 

proper method to evaluate the scRNAseq data can help us forecast the type of cell 

subpopulation or uncommon cell population with more accuracy. 

We all know that stem cells, particularly MSC, have tremendous medicinal potential and might 

be crucial in the treatment or cure of a variety of disorders. Isolated MSCs, on the other hand, 

have a distinct effectiveness and self-renewal capability. If they are used directly in clinical 

practice, they are likely to produce discrepancies, if not outright opposing results, between 

expectations and actual results. However, if people can use appropriate methods to accurately 

predict the types of stem cell subpopulations, the cure rate will also improve when using MSC 

for stem cell therapy, allowing people to better use cell therapy and regenerative medicine 

strategies to treat various diseases and structural injuries. Humanity will gain from the use of 

this exact medicinal procedure. Finally, we expect that combining deep learning and scRNAseq 

data will enhance cell therapy and regenerative medicine implementation, as well as have an 

impact on precision medicine implementation. 
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5 Conclusion 

The application of several deep learning approaches to scRNAseq data was summarized in this 

review. While the current deep learning approaches for scRNAseq analysis are promising, 

improved tools are still required to effectively deal with technical noise, account for cell 

expression variability, assess MSCs, and forecast stem cell type. Furthermore, using these deep 

learning algorithms with scRNAseq data to reliably and quickly identify the kind and function 

of each cell is not yet viable. We came to the conclusion that more research into how to apply 

deep learning algorithms to analyze scRNAseq data is necessary since it can improve cell 

therapy and regenerative medicine efforts. 
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