Exploring Projective Relations of Two (α, β)-Metric Subclasses Jack Hughes¹, Daniel Walker¹, Joshua Thompson², Samuel Brown³, and Lucas Taylor*³

Department of Chemical Engineering, University of Sydney, Australia
 Department of Physics, University of Toronto, Canada
 Department of Environmental Science, University of Queensland, Australia

ABSTRACT

In this paper, we find the necessary and sufficient condition to characterize the projective relation between two subclasses of (α, β) -metrics $L = \alpha + \beta - \frac{\beta^2}{\alpha}$ and $\bar{L} = \frac{\bar{\alpha}^2}{\bar{\beta}}$ on a manifold M with dimension $n \geq 3$, where α and $\bar{\alpha}$ are two Riemannian metrics, β and $\bar{\beta}$ are two non-zero 1-forms.

Keywords: Finsler space, (α, β) metric, Kropina metric, Projective change, Douglas metric. **AMS Subject Classification (2010): 53B40, 53C60**

I. INTRODUCTION

In Finsler geometry, two Finsler metrics F and \bar{F} on a manifold M are called projectively related if $G^i = \bar{G}^i + Py^i$, where G^i and \bar{G}^i are the geodesic coefficients of F and \bar{F} respectively and P = P(x, y) is a scalar function on the slit tangent bundle TM_0 . In this case, any geodesic of the first is also geodesic for the second and viceversa. The projective changes between two Finsler spaces have been studied by [1], [2], [3], [4], [6], [11], [13], [14], [18], [19], [20].

 (α, β) -metrics form a special and very important classes of Finsler metrics which can be expressed in the for $F = \alpha \varphi(s)$: $s = \frac{\beta}{\alpha}$, where α is a Riemannian metric and β is a 1-form and φ is a C^{∞} positive function on the definite domain. In particular, when $\varphi = \frac{1}{s}$, the Finsler metric $F = \frac{\beta^2}{\alpha}$ is called Kropina metric. Kropina metric was first introduced by L. Berwald in connection with two dimensional Finsler space with rectilinear extremal and was investigated by V.K. Kropina [7]. They together with Randers metric are C-reducible [10]. However, Randers metric are regular Finsler metric but Kropina metric is non-regular Finsler metric. Kropina metric seem to be among the simplest nontrivial Finsler metric with many interesting applications in physics, electron optics with a magnetic field, dissipative mechanics and irreversible thermodynamics [5], [15]. Also, there are interesting applications in relativistic field theory, evolution and developmental biology.

Based on Stavrino's work on Finslerian structure of anisotropic gravitational field [16], we know that the anisotropy is an issue of the background radiation for all possible (α, β) -metrics. Then the 1-form β represents the same direction of the observed anisotropy of the microwave background radiation. That is, if two (α, β) -metrics $F = \alpha \varphi\left(\frac{\beta}{\alpha}\right)$ and $\bar{F} = \bar{\alpha}\varphi\left(\frac{\bar{\beta}}{\bar{\alpha}}\right)$ are the same anisotropy directions (or, they have the same axis rotation to their indicatrices), then their 1-form.

 β and $\bar{\beta}$ are collinear, there is a function $\mu \in C^{\infty}(M)$ such that $\beta(x,y) = \mu \bar{\beta}(x,y)$. By [3], for the projective equivalence between a general (α,β) -metric and a Kropina metric, we have the following lemma:

Lemma 1.1. Let $F = \alpha \varphi\left(\frac{\beta}{\alpha}\right)$ be an (α, β) -metricon n-dimensional manifold $M(n \ge 3)$, satisfying that β is not parallel with respect to $\alpha, db \ne 0$ everywhere (or) b = constant and F is not of Randers type. Let $\overline{F} = \frac{\overline{\alpha}^2}{\overline{\beta}}$ be a Kropina metric on the manifold M, where $\overline{\alpha} = \lambda(x)\alpha$ and $\overline{\beta} = \mu(x)\beta$. Then F is Projectively Equivalent to \overline{F} if and only if the following equations holds,

[1 +
$$(k_1 + k_2 s^2) s^2 + k_3 s^2$$
] $\varphi'' = (k_1 + k_2 s^2) (\varphi - s \varphi'),$ (1.1)

$$G_{\alpha}^i = \bar{G}_{\alpha}^i + \theta y^i - \sigma(k_1 \alpha^2 + k_2 \beta^2) b^i,$$
 (1.2)

$$b_{i|j} = 2\sigma \left[(1 + k_1 b^2) a_{ij} + (k_2 b^2 + k_3) b_i b_j \right],$$
 (1.3)
$$\bar{s}_{ij} = \frac{1}{\bar{h}^2} \left(\bar{b}_i \bar{s}_j - \bar{b}_j \bar{s}_i \right),$$
 (1.4)

where $\sigma = \sigma(x)$ is a scalar function and θ is 1-form, k_1 , k_2 , k_3 are constants. In this case, both $F = \alpha \varphi\left(\frac{\beta}{\alpha}\right)$ and $\overline{F} = \frac{\overline{\alpha}^2}{\overline{\beta}}$ are Douglas metrics.

The purpose of this paper is to study the projective relation of two subclasses of (α, β) -metric. The main results of the paper are as follows.

Theorem 1.1. Let $F = \alpha + \beta - \frac{\beta^2}{\alpha}$ be an (α, β) -metric and $\overline{F} = \frac{\overline{\alpha}^2}{\overline{\beta}}$ be a Kropina metric on an n-dimensional manifold $M(n \geq 3)$ where α and $\overline{\alpha}$ are two Riemannian metrics, β and $\overline{\beta}$ are two non-zero 1-forms. Then F is projectively equivalent to \overline{F} if and only if they are Douglas metrics and the geodesic co-efficient of α and $\overline{\alpha}$ have the following relations

$$G_{\alpha}^{i} - 2\alpha^{2}\tau b^{i} = \bar{G}_{\overline{\alpha}}^{i} + \frac{1}{2\bar{b}^{2}} (\bar{\alpha}^{2}\bar{s}^{i} + \bar{r}_{00}\bar{b}^{i}) + \theta y^{i}, \tag{1.5}$$

$$\bar{b}^{i} - \bar{s}^{i}\bar{b} - \bar{b}^{2} - \|\bar{\theta}\|^{2} \text{ and } \sigma = \sigma(x) \text{ is a scalar function and } 0 = 0 \text{ which } 1 \text{ form an}$$

Where $b^i = a^{ij}b_j$, $\bar{b}^i = \bar{a}^{ij}\bar{b}_j$, $\bar{b}^2 = \|\bar{\beta}\|_{\bar{a}}^2$ and $\tau = \tau(x)$ is a scalar function and $\theta = \theta_i y^i$ is a 1-form on M

By [8] and [9], we obtain immediately from theorem (1.1), that

Proposition 1. Let $F = \alpha + \beta - \frac{\beta^2}{\alpha}$ an (α, β) -metric and $\overline{F} = \frac{\overline{\alpha}^2}{\overline{\beta}}$ be a Kropina metric on a n-dimensional manifold $M(n \ge 3)$ where α and $\overline{\alpha}$ are two Riemannian metrics, β and $\overline{\beta}$ are two nonzero collinear 1-forms. Then F is projectively equivalent to \overline{F} if and only if the following equations hold:

$$G_{\alpha}^{i} - 2\alpha^{2}\tau b^{i} = \bar{G}_{\bar{\alpha}}^{i} + \frac{1}{2\bar{b}^{2}} (\bar{\alpha}^{2}\bar{s}^{i} + \bar{r}_{00}\bar{b}^{i}) + \theta y^{i}, \tag{1.6}$$

$$b_{i|j} = 2\tau \{ (1 - 2b^2)a_{ij} + 3b_i b_j \}, \tag{1.7}$$

$$\bar{s}_{ij} = \frac{1}{\bar{b}^2} \left(\bar{b}_i \bar{s}_j - \bar{b}_j \bar{s}_i \right), \tag{1.8}$$

where $b_{i|j}$ denote the coefficient of the covariant derivatives of β with respect to α .

II. PRELIMINARIES

We say that a Finsler metric is projectively related to another Finsler metric if they have the same geodesic as point sets. In Riemannian geometry, two Riemannian metrics α and $\bar{\alpha}$ are projectively related if and only if their spray coefficients have the relation [2],

$$G_{\alpha}^{i} = G_{\overline{\alpha}}^{i} + \lambda_{x^{k}} y^{k} y^{i}, \qquad (2.1)$$

where $\lambda = \lambda(x)$ is a scalar function on the based manifold and (x^i, y^i) denotes the local coordinates in the tangent bundle TM.

Two Finsler metrics F and \overline{F} on a manifold M are called projectively related if and only if their spray coefficients have the relation [2],

$$G^{i} = \bar{G}^{i} + P(y)y^{i} \tag{2.2}$$

where P(y) is a scalar function on $TM\setminus\{0\}$ and homogeneous of degree one in y.

For a given Finsler metric L = L(x, y), the geodesic of L satisfy the following ODE:

$$\frac{d^2x^i}{dt^2} + 2G^i\left(x, \frac{dx}{dt}\right) = 0,$$

Where $G^i = G^i(x, y)$ is called the geodesic coefficient, which is given by

$$G^{i} = \frac{1}{4} g^{il} \{ [F^{2}]_{x^{m} y^{l}} y^{m} - [F^{2}]_{x^{l}} \}.$$

Let $\varphi = \varphi(s)$, $|s| < b_0$, be a positive C^{∞} function satisfying the following

$$\varphi(s) - s\varphi'(s) + (b^2 - s^2)\varphi''(s) > 0, \quad (|s| \le b < b_0). \tag{2.3}$$

If $\alpha = \sqrt{a_{ij}y^iy^j}$ is a Riemannian metric and $\beta = b_iy^i$ is 1-form satisfying $\|\beta_x\|_{\alpha} < b_0 \forall x \in M$, then $F = \alpha \varphi(s)$,

 $s = \frac{\beta}{\alpha}$, is called an (regular) (α, β) -metric. In this case, the fundamental form of the metric tensor induced by F is

Let $\nabla \beta = b_{i|j} dx^i \otimes dx^j$ be covariant derivative of β with respect to α . Denote

$$r_{ij} = \frac{1}{2} (b_{i|j} + b_{j|i}); \ s_{ij} = \frac{1}{2} (b_{i|j} - b_{j|i}).$$

Note that β is closed if and only if $s_{ij} = 0$ [17].

Let $s_i = b^i s_{ij}$, $s_i^i = a^{il} s_{lj}$, $s_0 = s_i y^i$, $s_0^i = s_i^i y^j$ and $r_{00} = r_{ij} y^i y^j$.

The relation between the geodesic coefficients G^i of F and geodesic coefficients G^i_{α} of α is given by

$$G^{i} = G_{\alpha}^{i} + \alpha Q s_{0}^{i} \{-2Q\alpha s_{0} + r_{00}\} + \Psi b^{i} + \theta \alpha^{-1} y^{i}, \tag{2.4}$$

Where

$$\theta = \frac{\varphi \varphi' - s(\varphi \varphi'' + \varphi' \varphi')}{2\varphi \{(\varphi - s\varphi') + (b^2 - s^2)\varphi''\}}$$

$$Q = \frac{\varphi'}{\varphi - s\varphi'}$$

$$\Psi = \frac{1}{2} \frac{\varphi''}{\{(\varphi - S\varphi') + (b^2 - s^2)\varphi''\}}$$

For a Kropina metric $F = \frac{\alpha^2}{\beta}$, it is very easy to see that it is not a regular (α, β) -metric but the relation $\varphi(s)$ – $s\varphi'(s) + (b^2 - s^2)\varphi''(s) > 0$ is still true for |s| > 0. In [8], the authors characterized the (α, β) -metrics of Douglas type.

Lemma 2.2. [8]: Let $F = \alpha \varphi\left(\frac{\beta}{\alpha}\right)$ be a regular (α, β) -metric on an n-dimensional manifold $M(n \ge 3)$. Assume that β is not parallel with respect to α and $db \neq 0$ everywhere or b= constant and F is not of Randers type. Then F is a Douglas metric if and only if the function $\varphi = \varphi(s)$ with $\varphi(0) = 1$ satisfies the following ODE's $[1 + (k_1 + k_2 s^2) s^2 + k_3 s^2] \varphi'' = (k_1 + k_2 s^2) (\varphi - s \varphi'),$

and β satisfies

$$b_{i|j} = 2\sigma [(1 + k_1 b^2)a_{ij} + (k_2 b^2 + k_3)b_i b_j]$$
 (2.6)

 $b_{i|j} = 2\sigma \big[(1+k_1b^2)a_{ij} + (k_2b^2+k_3)b_ib_j \big] \qquad ($ Where $b^2 = \|\beta\|_\alpha^2$ and $\sigma = \sigma(x)$ is a scalar function and k_1, k_2, k_3 are constants $(k_2, k_3) \neq (0,0)$. For a Kropina metric, we have the following,

Lemma 2.3.[9]: Let $F = \frac{\alpha^2}{\beta}$ be Kropina metric on an n-dimensional manifold M. Then

(i) $(n \ge 3)$ Kropina metric F with $b^2 \ne 0$ is Douglas metric if and only if $s_{ik} = \frac{1}{b^2} (b_i s_k - b_j s_i)$.

$$s_{ik} = \frac{1}{h^2} (b_i s_k - b_j s_i). \tag{2.7}$$

(ii) (n = 2) Kropina metric F is a Douglas metric

Definition 2.1. [2]: Let

$$D^{i}_{jkl} = \frac{\partial^{3}}{\partial y^{j} \partial y^{k} \partial y^{l}} \left(G^{i} - \frac{1}{n+1} \frac{\partial G^{m}}{\partial y^{m}} y^{i} \right)$$
 (2.8)

Where G^i is the spray coefficients of F. The tensor $D = D^i_{jkl} \partial_i \otimes dx^j \otimes dx^k \otimes dx^l$ is called the Douglas tensor. A Finsler metric is called Douglas metric if the Douglas tensor vanishes.

We know that the Douglas tensor is a projective invariant [12]. Note that the spray coefficients of a Riemannian metric are quadratic forms and one can see that the Douglas tensor vanishes from (2.8). This shows that Douglas tensor is a non-Riemannian quantity.

In the following, we use quantities with a bar to denote the corresponding quantities of the metric \overline{F} .

Now, first we compute the Douglas tensor of a general (α, β) -metric.

Let

$$\hat{G}^{i} = G_{\alpha}^{i} + \alpha Q s_{0}^{i} + \Psi \{-2Q\alpha s_{0} + r_{00}\} b^{i}, \tag{2.9}$$

then (2.4) becomes

$$G^{i} = \hat{G}^{i} + \theta \{-2Q\alpha s_{0} + r_{00}\}\alpha^{-1}y^{i}.$$

Clearly, G^i and \hat{G}^i are projective equivalent according to (2.2), they have the same Douglas tensor.

$$T^{i} = \alpha Q s_{0}^{i} + \Psi \{-2Q\alpha s_{0} + r_{00}\}b^{i}.$$
 (2.10)

Then $\hat{G}^i = G^i_\alpha + T^i$, thus

T', thus
$$D_{jkl}^{i} = \widehat{D}_{jkl}^{i},$$

$$= \frac{\partial^{3}}{\partial y^{j} \partial y^{k} \partial y^{l}} \left(G_{\alpha}^{i} - \frac{1}{n+1} \frac{\partial G_{\alpha}^{m}}{\partial y^{m}} y^{i} + T^{i} - \frac{1}{n+1} \frac{\partial T^{m}}{\partial y^{m}} y^{i} \right)$$

$$= \frac{\partial^{3}}{\partial y^{j} \partial y^{k} \partial y^{l}} \left(T^{i} - \frac{1}{n+1} \frac{\partial T^{m}}{\partial y^{m}} y^{i} \right)$$
1) explicitly, we use the following identities

To compute (2.11) explicitly, we use the foll

$$\alpha_{v^k} = \alpha^{-1} y_k, \ s_{v^k} = \alpha^{-2} (b_k \alpha - s y_k),$$

where $y_i = a_{il}y^l$. Here after, α_{y^k} means $\frac{\partial \alpha}{\partial y^k}$. Then

$$[\alpha Q s_0^m]_{y^m} = \alpha^{-1} y_m Q s_0^m + \alpha^{-2} Q' [b_m \alpha^2 - \beta y_m] s_0^m = Q' s_0,$$

and

$$[\Psi(-2Q\alpha s_0 + r_{00})b^m]_{V^m} = \Psi^{'}\alpha^{-1}(b^2 - s^2)[r_{00} - 2Q\alpha S_0] + 2\Psi[r_0 - Q^{'}(b^2 - s^2)s_0 - Qss_0]$$

where $r_i = b^i r_{ij}$ and $r_0 = r_i y^i$. Thus from (2.10), we have

$$T_{y^{m}}^{m} = Q's_{0} + \Psi'\alpha^{-1}(b^{2} - s^{2})[r_{00} - 2Q\alpha s_{0}] + 2\Psi[r_{0} - Q'(b^{2} - s^{2})s_{0} - Qss_{0}].$$
 (2.12)

Let F and \overline{F} be two (α, β) -metrics, we assume that they have the same Douglas tensor, i.e.

$$D_{jkl}^{\iota} = \bar{D}_{jkl}^{\iota}$$

From (2.8) and (2.11), we have

$$\frac{\partial^3}{\partial y^j \partial y^k \partial y^l} \left(T^i - \bar{T}^i - \frac{1}{n+1} \left(T_{y^m}^m - \bar{T}_{y^m}^m \right) y^i \right) = 0$$

Then there exists a class of scalar function $H_{jk}^i = H_{jk}^i(x)$, such that

$$H_{00}^{i} = T^{i} - \bar{T}^{i} - \frac{1}{n+1} \left(T_{ym}^{m} - \bar{T}_{ym}^{m} \right) y^{i}, \tag{2.13}$$

 $H_{00}^{i} = T^{i} - \bar{T}^{i} - \frac{1}{n+1} \left(T_{y^{m}}^{m} - \bar{T}_{y^{m}}^{m} \right) y^{i},$ where $H_{00}^{i} = H_{jk}^{i} y^{j} y^{k}$, T^{i} and $T_{y^{m}}^{m}$ are given by (2.10) and (2.12) respectively

III. PROJECTIVE RELATION OF CLASSES OF (α, β) -METRICS

In this section, we find the projective relation between special metric (α, β) -metric $F = \alpha + \beta - \frac{\beta^2}{\alpha}$ and $\overline{F} = \frac{\overline{\alpha}^2}{\overline{B}}$ on a same underlying manifold M of dimension $n \ge 3$.

For (α, β) -metric $F = \alpha + \beta - \frac{\beta^2}{\alpha}$, one can prove y (2.3) that F is a regular Finsler metric if and only if 1form β satisfies the condition $\|\beta_x\|_{\alpha} < 1$ for any $x \in M$.

The geodesic coefficients are given by (2.4) with

$$\theta = \frac{\{1 + 3s^2 - 4s^3\}}{2\{1 + s - s^2\}\{1 - 2b^2 + 3s^2\}'}$$

$$Q = \frac{1 - 2s}{1 + s^2},$$

$$\Psi = -\frac{1}{1 - 2b^2 + 3s^2},$$
(3.1)
the geodesic coefficient are given by (2.4) with

For Kropina metric $\bar{F} = \frac{\bar{\alpha}^2}{\bar{R}}$, the geodesic coefficient are given by (2.4) with

$$\bar{Q} = -\frac{1}{2s}$$

$$\bar{\theta} = -\frac{s}{\bar{b}^2}$$

$$\bar{\Psi} = \frac{1}{2\bar{b}^2}.$$
(3.2)

In this paper we assume that $\lambda = \frac{1}{n+1}$. Since the Douglas tensor is a projective invariant,

we have,

Theorem 3.2. Let $F = \alpha + \beta - \frac{\beta^2}{\alpha}$ be an (α, β) - metric and $\overline{F} = \frac{\overline{\alpha}^2}{\overline{\beta}}$ be a Kropina metric on an n-dimensional manifold $M(n \ge 3)$ where α and $\overline{\alpha}$ are two Riemannian metrics, β and $\overline{\beta}$ are two non zero 1-forms. Then F and \overline{F} have the same Douglas tensors if and only if they are all Douglas metrics.

Proof: First, we prove the sufficient condition.

Let F and \bar{F} be Douglas metrics and corresponding Douglas tensors be D^i_{jkl} and \bar{D}^i_{jkl} . Then by the definition of Douglas metric, we have $D^i_{jkl} = 0$ and $\bar{D}^i_{jkl} = 0$, that is both F and \bar{F} have the same Douglas tensor, then (2.13) holds.

Plugging (3.1) and (3.2) into (2.13), we have

$$H_{00}^{i} = \frac{A^{i}\alpha^{9} + B^{i}\alpha^{8} + C^{i}\alpha^{7} + D^{i}\alpha^{6} + E^{i}\alpha^{5} + F^{i}\alpha^{4} + G^{i}\alpha^{3} + H^{i}\alpha^{2} + I^{i}}{I\alpha^{8} + K\alpha^{6} + L\alpha^{4} + M\alpha^{2} + N} + \frac{\bar{A}^{i}\bar{\alpha}^{2} + \bar{B}^{i}}{2\bar{b}^{2}\bar{B}}$$
(3.3)

where
$$A^{i} = (1-2b^{2})\{s^{i}_{0} + 2s_{0}b^{i} - 2b^{2}s^{i}_{0}\}, \qquad B^{i} = (1-2b^{2})\{4b^{2}\beta s^{i}_{0} - 4\beta s_{0}b^{i} - r_{00}b^{i} + 2\lambda y^{i}(r_{0} + s_{0}) - 2\beta s^{i}_{0}\}, \qquad C^{i} = \beta \left[\beta \{(4b^{2}(b^{2} - 4) + 7)s^{i}_{0} + 4(2 - b^{2}s_{0}b^{i})\} + 4(1 + b^{2})\lambda s_{0}y^{i}\right], \qquad D^{i} = \beta \left[-2\beta^{3}\{(4b^{2}(b^{2} - 4) + 7)s^{i}_{0} + (8 - 4b^{2})s_{0}b^{i}\} + (1 + b^{2})\lambda s_{0}b^{i} - \beta r_{00}b^{i}(4b^{2} - 5) - 2\lambda y^{i}\{3\beta^{2}r_{00} + \beta ((4b^{2} - 5)r_{0} + (12b^{2} - 3)s_{0})\}\right], \qquad E^{i} = \beta^{3}\left[3\beta\{5s^{i}_{0} + 2s_{0}b^{i} - 4b^{2}s^{i}_{0}\} + (4 - 4b^{2})s_{0}\lambda y^{i}\right], \qquad E^{i} = \beta^{3}\left[6\beta^{2}\{4b^{2}s^{i}_{0} - 12s_{0}b^{i} - 5s^{i}_{0}\} - (7 - 2b^{2})\beta r_{00}b^{i} + \{6(1 - 2b^{2})r_{00} + \beta ((14 - 4b^{2})r_{0} + 6b^{2})r_{0} + 6b^{2}s^{i}_{0}, B^{i}_{0}\}\right], \qquad G^{i} = 9\beta^{6}s^{i}_{0}, \qquad G^{i} = 9\beta^{6}s^{i}_{0}, \qquad G^{i} = 6\beta^{7}r_{00}\lambda y^{i}$$

And
$$J = (1 - 2b^{2})^{2},$$

$$K = 4\beta^{2}(1 - 2b^{2})(2 - b^{2}),$$

$$L = 2\beta^{4}(11 + 2b^{4} - 14b^{2}),$$

$$M = -12\beta^{6}(b^{2} - 2),$$

$$N = 9\beta^{8}$$

And

$$\begin{split} \bar{A}^i &= \bar{b}^2 \bar{s}_0^i - \bar{b}^i \bar{s}_0, \\ \bar{B}^i &= \bar{\beta} \big[2 \lambda y^i (\bar{r}_0 + \bar{s}_0) - \bar{b}^i \bar{r}_{00} \big]. \end{split}$$

Further, (3.3) is equivalent to

$$(A^{i}\alpha^{9} + B^{i}\alpha^{8} + C^{i}\alpha^{7} + D^{i}\alpha^{6} + E^{i}\alpha^{5} + F^{i}\alpha^{4} + G^{i}\alpha^{3} + H^{i}\alpha^{2} + I^{i})(2\bar{b}^{2}\bar{\beta}) + (\bar{A}^{i}\bar{\alpha}^{2} + \bar{B}^{i}) \times (J\alpha^{8} + K\alpha^{6} + L\alpha^{4} + M\alpha^{2} + N) = H_{00}^{i}(2\bar{b}^{2}\bar{\beta})(J\alpha^{8} + K\alpha^{6} + L\alpha^{4} + M\alpha^{2} + N)$$
(3.4)

Replacing (y^i) by $(-y^i)$ in (3.4) yields

$$(-A^{i}\alpha^{9} + B^{i}\alpha^{8} - C^{i}\alpha^{7} + D^{i}\alpha^{6} - E^{i}\alpha^{5} + F^{i}\alpha^{4} - G^{i}\alpha^{3} + H^{i}\alpha^{2} + I^{i})(-2\bar{b}^{2}\bar{\beta}) - (\bar{A}^{i}\bar{\alpha}^{2} + \bar{B}^{i}) \times (J\alpha^{8} + K\alpha^{6} + L\alpha^{4} + M\alpha^{2} + N) = -H^{i}_{00}(J\alpha^{8} + K\alpha^{6} + L\alpha^{4} + M\alpha^{2} + N)(2\bar{b}^{2}\bar{\beta})$$
(3.5)

Adding (3.4) and (3.5), we get

$$(A^{i}\alpha^{9} + C^{i}\alpha^{7} + E^{i}\alpha^{5} + G^{i}\alpha^{3})(2\bar{b}^{2}\bar{\beta}) = 0$$

Above equation reduces to

$$A^{i}\alpha^{9} + C^{i}\alpha^{7} + E^{i}\alpha^{5} + G^{i}\alpha^{3} = 0$$

$$(3.6)$$

Therefore, we conclude that (3.3) is equivalent to

$$H_{00}^{i} = \frac{B^{i}\alpha^{8} + D^{i}\alpha^{6} + F^{i}\alpha^{4} + H^{i}\alpha^{2} + I^{i}}{J\alpha^{8} + K\alpha^{6} + L\alpha^{4} + M\alpha^{2} + N} + \frac{\bar{A}^{i}\bar{\alpha}^{2} + \bar{B}^{i}}{2\bar{b}^{2}\bar{\beta}}$$
(3.7)

(3.7) is equivalent to

$$B^{i}\alpha^{8} + D^{i}\alpha^{6} + F^{i}\alpha^{4} + H^{i}\alpha^{2} + I^{i})(2\bar{b}^{2}\bar{\beta}) + \overline{(A^{i}\bar{\alpha}^{2} + \bar{B}^{i})} \times (J\alpha^{8} + K\alpha^{6} + L\alpha^{4} + M\alpha^{2} + N) = H_{00}^{i}(2\bar{b}^{2}\bar{\beta})(J\alpha^{8} + K\alpha^{6} + L\alpha^{4} + M\alpha^{2} + N)$$
(3.8)

In the above equation (3.8), we can see that $\bar{A}^i\bar{\alpha}^2(J\alpha^8+K\alpha^6+L\alpha^4+M\alpha^2+N)$ can be divided by $\bar{\beta}$. Since $\beta=\mu\bar{\beta}$, then $\bar{A}^i\bar{\alpha}^2J\alpha^8$ can be divided by $\bar{\beta}$. Because $\bar{\beta}$ is prime with respect to α and $\bar{\alpha}$. Therefore $\bar{A}^i=\bar{b}^2\bar{s}_0^i-\bar{b}^i\bar{s}_0$ can be divided by $\bar{\beta}$. Hence there is a scalar function $\Psi^i(x)$ such that

$$\bar{b}^2 \bar{s}_0^i - \bar{b}^i \bar{s}_0 = \bar{\beta} \Psi^i \tag{3.9}$$

Transvecting (3.9) by $\bar{y}_i = \bar{a}_{ij} y^j$, we get $\Psi^i(x) = -\bar{s}^i$. Thus we have

$$\bar{s}_{ij} = \frac{1}{\bar{h}^2} \left(\bar{b}_i \bar{s}_j - \bar{b}_j \bar{s}_i \right) \tag{3.10}$$

Thus, by lemma 2.3, $\bar{F}=\frac{\bar{\alpha}^2}{\bar{\beta}}$ is a Douglas metrics. i.e. Both $F=\alpha+\beta-\frac{\beta^2}{\alpha}$, and $\bar{F}=\frac{\bar{\alpha}^2}{\bar{\beta}}$ are Douglas metrics.

If n=2, $\overline{F}=\frac{\overline{\alpha}^2}{\overline{\beta}}$ is a Douglas metric by lemma 2.3. Thus F and \overline{F} have the same Douglas tensors means that they are Douglas metrics. Thus F and \overline{F} have the same Douglas tensors means that they are Douglas metrics. Thus $F=\alpha+\beta-\frac{\beta^2}{\alpha}$ be an special (α,β) -metric and $\overline{F}=\frac{\overline{\alpha}^2}{\overline{\beta}}$ be a Kropina metric on an n-dimensional manifold $M(n \ge 2)$, where α and $\overline{\alpha}$ are Riemannian metric, β and $\overline{\beta}$ are two non zero collinear 1-forms. Then F and \overline{F} have same Douglas tensors if and only if they are Douglas metrics. This completes the proof of theorem (3.2).

IV. PROOF. OF THEOREM 1.1.

First, we prove the necessary condition:

Since Douglas tensor is an invariant under projective changes between two Finsler metrics, If F is projectively related to \overline{F} , then they have the same Douglas tensor. According to theorem (3.2), we obtain that both F and \overline{F} are Douglas metrics.

By [3], It is well known that Kropina metric $\overline{F} = \frac{\overline{\alpha}^2}{\overline{\beta}}$ with $b^2 \neq 0$ is a Douglas metric if and only if $s_{ik} = \frac{1}{b^2}(b_is_k - b_ks_i)$ and also it has it has been proved that by [7], we know that (α, β) -metric, $F = \alpha + \beta - \frac{\beta^2}{\alpha}$ is a Douglas metric if and only if

$$b_{i|j} = 2\tau \left\{ (1 - 2b^2)a_{ij} + 3b_i b_j \right\} \tag{4.1}$$

where $\tau = \tau(x)$ is a scalar function on M. In this case, β is closed. Plugging (4.1) and (3.1) into (2.4), we have

$$G^{i} = G_{\alpha}^{i} + \left(\frac{\alpha^{3} + 3\alpha\beta^{2} - 4\beta^{3}}{\alpha^{2} + \alpha\beta - \beta^{2}}\right)\tau y^{i} - 2\tau\alpha^{2}b^{i}$$

$$\tag{4.2}$$

Again plugging (3.10) and (3.2) into (2.4), we have

$$\bar{G}^{i} = \bar{G}_{\alpha}^{i} + \frac{1}{2\bar{b}^{2}} \left\{ -\bar{\alpha}^{2} \bar{s}^{i} + \left(2\bar{s}_{0} y^{i} - \bar{r}_{00} \bar{b}^{i} \right) + 2 \frac{\bar{r}_{00} \bar{\beta} y^{i}}{\bar{\alpha}^{2}} \right\}$$
(4.3)

Since F is Projectively equivalent to \bar{F} , then their exit a scalar function P = P(x, y) on $TM \setminus \{0\}$ such that $G^i = \bar{G}^i + Py^i$ (4.4)

By (4.2), (4.3) and (4.4), we have

$$\left[P - \left(\frac{\alpha^{3} + 3\alpha\beta^{2} - 4\beta^{3}}{\alpha^{2} + \alpha\beta - \beta^{2}}\right)\tau - \frac{1}{\bar{b}^{2}}\left(\bar{s}_{0} + \frac{\bar{r}_{00}\bar{\beta}}{\bar{\alpha}^{2}}\right)\right]y^{i} = G_{\alpha}^{i} - \bar{G}_{\bar{\alpha}}^{i} - 2\alpha^{2}\tau b^{i} - \frac{1}{2\bar{b}^{2}}\left(\bar{\alpha}^{2}\bar{s}^{i} + \bar{r}_{00}\bar{b}^{i}\right) \tag{4.5}$$

Note that RHS of above equation is in quadratic form.

Then there must be a one form $\theta = \theta_i y^i$ on M, such that

$$\left[P - \left(\frac{\alpha^3 + 3\alpha\beta^2 - 4\beta^3}{\alpha^2 + \alpha\beta - \beta^2}\right)\tau - \frac{1}{\bar{b}^2}\left(\bar{s}_0 + \frac{\bar{r}_{00}\bar{\beta}}{\bar{\alpha}^2}\right)\right] = \theta$$

Thus (4.5) becomes

$$G_{\alpha}^{i} - 2\alpha^{2}\tau b^{i} = \bar{G}_{\bar{\alpha}}^{i} + \frac{1}{2\bar{h}^{2}} (\bar{\alpha}^{2}\bar{s}^{i} + \bar{r}_{00}\bar{b}^{i}) + \theta y^{i}$$
(4.6)

This completes the proof of necessity.

Conversely from (4.2), (4.3) and (1.5) we have

$$G^{i} = \bar{G}^{i} + \left[\theta + \left(\frac{\alpha^{3} + 3\alpha\beta^{2} - 4\beta^{3}}{\alpha^{2} + \alpha\beta - \beta^{2}}\right)\tau + \frac{1}{\bar{b}^{2}}\left(\bar{s}_{0} + \frac{\bar{r}_{00}\bar{\beta}}{\bar{\alpha}^{2}}\right)\right]y^{i}$$
(4.7)

Thus F is projectively equivalent to \overline{F} . From the above theorem, immediately we get the following corollary

Corollary 4.1. [18]: Let $L = \alpha + \beta - \frac{\beta^2}{\alpha}$ be a special (α, β) -metric and $\overline{F} = \frac{\overline{\alpha}^2}{\overline{\beta}}$ be a Kropina metric be two (α, β) -metrics on a n-dimensional manifold M with dimension $n \geq 3$, where α and $\overline{\alpha}$ are two Riemannian metrics, β and $\overline{\beta}$ are two non-zero collinear 1-forms. Then F is projectively related to \overline{F} if and only if they are Douglas metrics and the spray coeffcients of α and $\overline{\alpha}$ have the following relations

$$\begin{split} G^{i} - 2\alpha^{2} \tau b^{i} &= \overline{G}_{\bar{\alpha}}^{i} + \frac{1}{2\bar{b}^{2}} \left(\overline{\alpha}^{2} \overline{s}^{i} + \overline{r}_{00} \overline{b}^{i} \right) + \theta y^{i}, \\ s_{ij} &= 0 \\ \overline{s}_{ij} &= \frac{1}{\overline{b}^{2}} (\overline{b}_{i} \overline{s}_{j} - \overline{b}_{j} \overline{s}_{i}) \\ b_{i|j} &= 2\tau \left\{ (1 - 2b^{2}) a_{ij} + 3b_{i} b_{j} \right\} \end{split}$$

Where $b_{i|j}$ denotes the coeffcients of the covariant derivative of β with respect to α .

REFERENCES

- 1. S. Bacso and M. Matsumot, Projective change between FInsler space with (α,β) metric, Tensor N.S. 55 (1994), 252-257.
- 2. N. Cui and Yi-Bing, Projective change between two classes of (α,β) -metrics, Diff.Geom. and its Applications 27 (2009), 566-573.
- 3. Feng Mu and Xinyue Cheng, On the Projective Equivalence between (α,β) -metrics and Kropina metric, Diff. Geom-Dynamical systems, Vol.14, (2012), 106-116.
- 4. Z. M. Haasiguchi and Y. Ichijyo, Randers space with rectilinear geodesics, Rep. Fac.Sci.Kagoshima.Uni, (Math. Phys.Chen), 13, (1980) 33-40.
- 5. R. S. Ingarden, Geometry of thermodynamics, Diff. Geom. Methods in Theor. Phys, XV Intern. Conf.Clausthal 1986, World Scientific, Singapore, 1987.
- 6. Jiang Jingnang and Cheng Xinyue, Projective change between two Important classes of (α,β)-metrics, Advances in Mathematics, Vol.06, (2012).
- 7. V. K. Kropina, On the Projective Finsler space with certain special form, Naucn. Doklady vyss. Skoly, Fiz-mat. Nauki, 1952(2)(1960), 38-42 (Russian).14
- 8. B. Li, Y. Shen and Z. Shen, On a Class of Douglas metrics, Studia Scientiarum Mathematicarum Hungarica, 46(3) (2009), 355-365.
- 9. M. Matsumto, Finsler Space with (α,β)-metric of douglas type, Tensor N.S. 60 (1998).

- 10. M. Matsumto and S. i. Hojo, A Conclusive theorem on C-reducible Finsler spaces, Tensors, N.S, 32 (1978), 225-230.
- 11. S. K. Narasimhamurthy, Projective change between Matsumoto metric and Randers metric, Proc. Jangjeon Math. Soc, No.03, 393-402 (2014).
- 12. H. S. park and Il-Yong Lee, Randers change of Finsler space with (α,β)-metric of Douglas Type, J.Korean Math. Soc.38 (3) (2001), 503-521.
- 13. Pradeep Kumar, Madhu T S and Ramesha M, Projective equivalence between two Families of Finsler metrics, Gulf Journal of Mathematics, 4(1)(2016), 65-74.
- 14. Pradeep Kumar, Ramesha M and Madhu T S, On two important classes of (α,β) -metrics being projectively related, International Journal of Current Research, 10(6)(2018), 70528-70536.
- 15. C. Shibat, On a FInsler space with (α,β)-metric, J. Hokkaido Uni. of Education, IIA 35 (1984), 1-6.
- 16. P. Stavrinos, F. Diakogiannnis, Finslerian structure of anisotropic gravitational field, Gravit. Cosmol., 10 (4) (2004), 1-11.
- 17. Z. Shen, On a Landsberg (α, β) -metric, (2006).
- 18. A. Tayebi, Sadeghi and E. Peghan, Two Families of Finsler metrics Projectively related to a Kropina metric, arixiv:1302.4435v1[math.Dg], (2013).
- 19. A. Tayebi, E. Peyghan and H. Sadeghi, On two subclasses of (α,β) -metrics being projectively related, Journal of Geometry and Physics, 62 (2012), 292-300.
- 20. M.Zohrehv and M.M.Rezaii, On Projective related two special classes of (α,β) -metrics, Differential geometry and its applications, 29 (2011), 660-669..