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ABSTRACT 

Many advanced problems, which appear in the field of engineering and sciences like heat conduction problems, 

mechanical oscillation problems, vibrating beams problems, electric circuit problems, population growth and 

radioactive decay problems, can be solved by integral transforms. In this paper, we present a comparative study of 

two integral transforms namely Mohand and Elzaki transforms and solve some systems of differential equations 

(Homogeneous & Non-Homogeneous) using both the transforms in application section. Results show that Mohand 

and Elzaki transforms are closely connected.  
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I. INTRODUCTION 
 

The advanced problems of mathematics, physics, chemistry, social science, biology, radio physics, astronomy, 

nuclear science, electronics, chemical and mechanical engineering can be solved using  integral transforms (Laplace 

transform [1, 7-11], Fourier transform [1], Aboodh transform [2], Hankel transform [1], Z-transform [1, 11], 

Wavelet transform [1], Elzaki transform [4], Mahgoub transform [5], Mohand transform [6], Sumudu transform 

[12], Mellin transform [1], Hermite transform [1], Kamal transform [3], etc.). Many real world problems, which are 

mathematically represented by differential equations, delay differential equations, partial differential equations, 

partial integro-differential equations, integral equations, integro-differential equations, solved by many scholars [13-

28] using these transforms. 

 

Aggarwal et al. [29] solved the problems of population growth and decay by applying Mohand transform.   

Aggarwal et al. [30] gave Mohand transform of Bessel’s functions. Kumar et al. [31] applied Mohand transform and 

solved first kind linear Volterra integral equations. Kumar et al. [32] applied Mohand transform for solving the 

mechanics and electrical circuit problems. Aggarwal et al. [33] gave the solution of second kind linear Volterra 

integral equations using Mohand transform. Sathya and Rajeswari [34] used Mohand transform and solved linear 

partial integro-differential equations. The solution of linear Volterra integro-differential equations usaing Mohand 

transform was given by Kumar et al. [35].  

 

Elzaki and Ezaki [36] used Elzaki transform and solved ordinary differential equation with variable coefficients. 

Elzaki and Ezaki [37] used Elzaki transform for solving partial differential equations. Shendkar and Jadhav [38] 

applied Elzaki transform for solving differential equations. Aggarwal et al. [39] used Elzaki transform for solving 

population growth and decay problems. Aggarwal et al. [40] applied Elzaki transform for solving linear Volterra 

integral equations of first kind. Aggarwal [41] defined Elzaki transform of Bessel’s functions. A comparative study 

of Mohand and Laplace transforms was given by Aggarwal and Chaudhary [42]. 

 

In this paper, we concentrate mainly on the comparative study of Mohand and Elzaki transforms and we solve some 

systems of differential equations using these transforms. 

 

II. DEFINITION OF MOHAND AND ELZAKI TRANSFORMS 
 

2.1 Definition of Mohand transforms: 

 Mohand and Mahgoub [6] defined “Mohand transform’’ of the function 𝐹(𝑡) for 𝑡 ≥ 0 as  

𝑀{𝐹(𝑡)} = 𝜈2∫ 𝐹(𝑡)𝑒−𝜈𝑡𝑑𝑡
∞

0

= 𝑅(𝑣), 0 < 𝑘1 ≤ 𝑣 ≤ 𝑘2, 

where the operator 𝑀 is called the Mohand transform operator. 
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2.2 Definition of Elzaki transforms: 

Elzaki [4] defined a new integral transform “Elzaki transform’’ of the function 𝐹(𝑡) for 𝑡 ≥ 0 as  

𝐸{𝐹(𝑡)} = 𝑣 ∫ 𝐹(𝑡)𝑒
−𝑡

𝑣 𝑑𝑡
∞

0
= 𝑇(𝑣), 0 < 𝑘1 ≤ 𝑣 ≤ 𝑘2,  

where the operator 𝐸 is called the Elzaki transform operator. 

 

If 𝐹(𝑡) is piecewise continuous and of exponential order then Mohand and Elzaki transforms of the function 𝐹(𝑡) 
for 𝑡 ≥ 0 exist. These two conditions are sufficient conditions for the existence of Mohand and Elzaki transforms of 

the function 𝐹(𝑡).  
 

III. PROPERTIES OF MOHAND AND ELZAKI TRANSFORMS 
 

In this section, we present some useful properties of Mohand and Elzaki transforms like the linearity property, 

change of scale property, first shifting theorem and convolution theorem. 

  

3.1 Linearity property of Mohand and Elzaki transforms: 

a. Linearity property of Mohand transforms [29-30, 33]: If Mohand transform of functions 𝐹1(𝑡) and 

𝐹2(𝑡)are𝑅1(𝑣)and 𝑅2(𝑣) respectively then Mohand transform of [𝑎𝐹1(𝑡) + 𝑏𝐹2(𝑡)] is given by [𝑎𝑅1(𝑣) +
𝑏𝑅2(𝑣)], where 𝑎, 𝑏 are arbitrary constants. 

b. Linearity property of Elzaki transforms [39-41]: If Elzaki transform of functions 𝐹1(𝑡) and 

𝐹2(𝑡)are 𝑇1(𝑣)and 𝑇2(𝑣) respectively then Elzaki transform of [𝑎𝐹1(𝑡) + 𝑏𝐹2(𝑡)] is given by [𝑎 𝑇1(𝑣) +
𝑏𝑇2(𝑣)], where 𝑎, 𝑏 are arbitrary constants. 

 

3.2 Change of scale property of Mohand and Elzaki transforms: 

a. Change of scale property of Mohand transforms [30, 33]:  If Mohand transform of function 𝐹(𝑡) is 

𝑅(𝑣) then Mohand transform of function 𝐹(𝑎𝑡)is given by 𝑎𝑅 (
𝑣

𝑎
). 

b. Change of scale property of Elzaki transforms [41]:  If Elzaki transform of function 𝐹(𝑡) is 𝑇(𝑣) 

then Elzaki transform of function 𝐹(𝑎𝑡)is given by 
1

𝑎2
𝑇(𝑎𝑣).  

 

3.3 Shifting property of Mohand and Elzaki transforms:  

a. Shifting property of Mohand transforms [33]:  If Mohand transform of function 𝐹(𝑡) is 𝑅(𝑣) then 

Mohand transform of function 𝑒𝑎𝑡𝐹(𝑡)is given by 
𝜈2

(𝑣−𝑎)2
𝑅(𝑣 − 𝑎). 

b. Shifting property of Elzaki transforms: If Elzaki transform of function 𝐹(𝑡) is 𝑇(𝑣) then Elzaki 

transform of function 𝑒𝑎𝑡𝐹(𝑡)is given by (1 − 𝑎𝑣)𝑇 (
𝑣

(1−𝑎𝑣)
).  

 

Proof: By the definition of Elzaki transform, we have  

𝐸{𝑒𝑎𝑡𝐹(𝑡)} = 𝑣∫ 𝑒𝑎𝑡𝐹(𝑡)𝑒
−𝑡

𝑣 𝑑𝑡
∞

0

= 𝑣∫ 𝐹(𝑡)𝑒−[
1

𝑣
−𝑎]𝑡𝑑𝑡

∞

0

 

= 𝑣∫ 𝐹(𝑡)𝑒
−

𝑡

[𝑣 (1−𝑎𝑣)⁄ ]
𝑑𝑡

∞

0

= (1 − 𝑎𝑣) [
𝑣

(1 − 𝑎𝑣)
∫ 𝐹(𝑡)𝑒

−
𝑡

[𝑣 (1−𝑎𝑣)⁄ ]
𝑑𝑡

∞

0

] = (1 − 𝑎𝑣)𝑇 (
𝑣

1 − 𝑎𝑣
). 

 

3.4 Convolution theorem for Mohand and Elzaki transforms: 

a. Convolution theorem for Mohand transforms [31, 33, 35]: If Mohand transform of functions 𝐹1(𝑡) and 

𝐹2(𝑡)are𝑅1(𝑣)and 𝑅2(𝑣) respectively then Mohand transform of their convolution 𝐹1(𝑡) ∗ 𝐹2(𝑡) is given by  

𝑀 {𝐹1(𝑡) ∗ 𝐹2(𝑡)} =
1

𝑣2
𝑀{𝐹1(𝑡)}𝑀{𝐹2(𝑡)} 

⇒ 𝑀{𝐹1(𝑡) ∗ 𝐹2(𝑡)} =
1

𝑣2
𝑅1(𝑣)𝑅2(𝑣), where 𝐹1(𝑡) ∗ 𝐹2(𝑡) is defined by 

𝐹1(𝑡) ∗ 𝐹2(𝑡) = ∫ 𝐹1(𝑡 − 𝑥)
𝑡

0

𝐹2(𝑥)𝑑𝑥 = ∫ 𝐹1(𝑥)
𝑡

0

𝐹2(𝑡 − 𝑥)𝑑𝑥 

b. Convolution theorem for Elzaki transforms [40-41]: If Elzaki transform of functions 𝐹1(𝑡) and 

𝐹2(𝑡)are 𝑇1(𝑣)and 𝑇2(𝑣)  respectively then Elzaki transform of their convolution 𝐹1(𝑡) ∗ 𝐹2(𝑡) is given by  
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𝐸{𝐹1(𝑡) ∗ 𝐹2(𝑡)} =
1

𝑣
𝐸{𝐹1(𝑡)}𝐸{𝐹2(𝑡)} 

⇒ 𝐸{𝐹1(𝑡) ∗ 𝐹2(𝑡)} =
1

𝑣
 𝑇1(𝑣) 𝑇2(𝑣) , where 𝐹1(𝑡) ∗ 𝐹2(𝑡) is defined by 

 𝐹1(𝑡) ∗ 𝐹2(𝑡) = ∫ 𝐹1(𝑡 − 𝑥)
𝑡

0
𝐹2(𝑥)𝑑𝑥 = ∫ 𝐹1(𝑥)

𝑡

0
𝐹2(𝑡 − 𝑥)𝑑𝑥 

 

IV. MOHAND AND ELZAKI TRANSFORMS OF THE DERIVATIVES OF THE 

FUNCTION 𝑭(𝒕) 
 

4.1 Mohand transforms of the derivatives of the function 𝑭(𝒕) [29-30]: 

If 𝑀{𝐹(𝑡)} = 𝑅(𝑣) then  

a) 𝑀{𝐹′(𝑡)} = 𝑣𝑅(𝑣) − 𝑣2𝐹(0) 
b) 𝑀{𝐹′′(𝑡)} = 𝑣2𝑅(𝑣) − 𝑣3𝐹(0) − 𝑣2𝐹′(0) 

c) 𝑀{𝐹(𝑛)(𝑡)} = 𝑣𝑛𝑅(𝑣) − 𝑣𝑛+1𝐹(0) − 𝑣𝑛𝐹′(0) −⋯…− 𝑣2𝐹(𝑛−1)(0) 
 

4.2 Elzaki transforms of the derivatives of the function 𝑭(𝒕) [39, 41]: 

If 𝐸{𝐹(𝑡)} = 𝑇(𝑣)then  

a) 𝐸{𝐹′(𝑡)} =
1

𝑣
𝑇(𝑣) − 𝑣𝐹(0) 

b) 𝐸{𝐹′′(𝑡)} =
1

𝑣2
𝑇(𝑣) − 𝐹(0) − 𝑣𝐹′(0) 

c) 𝐸{𝐹(𝑛)(𝑡)} =
1

𝑣𝑛
𝑇(𝑣) −

1

𝑣𝑛−2
𝐹(0) −

1

𝑣𝑛−3
𝐹′(0)……− 𝑣𝐹(𝑛−1)(0) 

 

V. MOHAND AND ELZAKI TRANSFORMS OF FREQUENTLY USED FUNCTIONS [29-

33, 39-41] 

 
Table: 1 

S.N. 𝐹(𝑡) 𝑀{𝐹(𝑡)} = 𝑅(𝑣) 𝐸{𝐹(𝑡)} = 𝑇(𝑣) 

1. 1 𝑣 𝑣2 

2. 𝑡 1 𝑣3 

3. 𝑡2 2!

𝑣
 

2! 𝑣4 

4. 𝑡𝑛, 𝑛 ∈ 𝑁 𝑛!

𝑣𝑛−1
 

𝑛! 𝑣𝑛+2 

5. 𝑡𝑛, 𝑛 > −1 Γ(𝑛 + 1)

𝑣𝑛−1
 

Γ(𝑛 + 1)𝑣𝑛+2 

6. 𝑒𝑎𝑡 𝑣2

𝑣 − 𝑎
 

𝑣2

1 − 𝑎𝑣
 

7. 𝑠𝑖𝑛𝑎𝑡 𝑎𝑣2

(𝑣2 + 𝑎2)
 

𝑎𝑣3

1 + 𝑎2𝑣2
 

8. 𝑐𝑜𝑠𝑎𝑡 𝑣3

(𝑣2 + 𝑎2)
 

𝑣2

1 + 𝑎2𝑣2
 

9. 𝑠𝑖𝑛ℎ𝑎𝑡 𝑎𝑣2

(𝑣2 − 𝑎2)
 

𝑎𝑣3

1 − 𝑎2𝑣2
 

10. 𝑐𝑜𝑠ℎ𝑎𝑡 𝑣3

(𝑣2 − 𝑎2)
 

𝑣2

1 − 𝑎2𝑣2
 

 

VI. INVERSE MOHAND AND ELZAKI TRANSFORMS 
 

6.1 Inverse Mohand transforms [29, 33, 42]: If 𝑅(𝑣)is the Mohand transform of 𝐹(𝑡)then 𝐹(𝑡)is called the 

inverse Mohand transform of 𝑅(𝑣)and in mathematical terms, it can be expressed as 

Bulletin of the Kyushu Institute of Technology - Pure and Applied Mathematics  ||   ISSN 1343-867043

Volume 26, Issue 4, 2023                                          https://kyupeerref.link                                           Page  43



𝐹(𝑡) = 𝑀−1{𝑅(𝑣)}, where 𝑀−1 is an operator and it is called as inverse Mohand transform operator. 

 

6.2 Inverse Elzaki transforms [39-41]: If 𝑇(𝑣) is the Elzaki transforms of 𝐹(𝑡)then 𝐹(𝑡) is called the inverse 

Elzaki transform of 𝑇(𝑣)and in mathematical terms, it can be expressed as 

𝐹(𝑡) = 𝐸−1{𝑇(𝑣)}, where 𝐸−1 is an operator and it is called as inverse Elzaki transform operator. 

 

VII. INVERSE MOHAND AND ELZAKI TRANSFORMS OF FREQUENTLY USED 

FUNCTIONS [29, 39-41] 

 
Table: 2 

S.N. 𝑅(𝑣) 𝐹(𝑡) = 𝑀−1{𝑅(𝑣)} = 𝐸−1{𝑇(𝑣)} 𝑇(𝑣) 

1. 𝑣 1 𝑣2 

2. 1 𝑡 𝑣3 

3. 1

𝑣
 

𝑡2

2
 

𝑣4 

4. 1

𝑣𝑛−1
 

𝑡𝑛

𝑛!
, 𝑛 ∈ 𝑁 

𝑣𝑛+2 

5. 1

𝑣𝑛−1
 

𝑡𝑛

Γ(𝑛 + 1)
, 𝑛 > −1 

𝑣𝑛+2 

6. 𝑣2

𝑣 − 𝑎
 

𝑒𝑎𝑡 𝑣2

1 − 𝑎𝑣
 

7. 𝑣2

(𝑣2 + 𝑎2)
 

𝑠𝑖𝑛𝑎𝑡

𝑎
 

𝑣3

1 + 𝑎2𝑣2
 

8. 𝑣3

(𝑣2 + 𝑎2)
 

𝑐𝑜𝑠𝑎𝑡 𝑣2

1 + 𝑎2𝑣2
 

9. 𝑣2

(𝑣2 − 𝑎2)
 

𝑠𝑖𝑛ℎ𝑎𝑡

𝑎
 

𝑣3

1 − 𝑎2𝑣2
 

10. 𝑣3

(𝑣2 − 𝑎2)
 

𝑐𝑜𝑠ℎ𝑎𝑡 𝑣2

1 − 𝑎2𝑣2
 

 

VIII. APPLICATIONS OF MOHAND AND ELZAKI TRANSFORMS FOR SOLVING 

SYSTEM OF DIFFERENTIAL EQUATIONS 
 

In this section some numerical applications are given to explain the procedure of solving the systems of differential 

equations (Homogeneous & Non-Homogeneous) using Mohand and Elzaki transforms. 

 

8.1 Consider a system of linear ordinary differential equations  

𝑑2𝑥

𝑑𝑡2
+ 3𝑥 − 2𝑦 = 0

𝑑2𝑥

𝑑𝑡2
+
𝑑2𝑦

𝑑𝑡2
− 3𝑥 + 5𝑦 = 0}

 

 
                                                                                                                                              (1) 

with 𝑥(0) = 0, 𝑦(0) = 0, 𝑥′(0) = 3, 𝑦′(0) = 2                                                                                                              (2)  
 

Solution using Mohand transforms: 

Taking Mohand transform of system (1), we have 

𝑀{
𝑑2𝑥

𝑑𝑡2
} + 3𝑀{𝑥} − 2𝑀{𝑦} = 0

𝑀 {
𝑑2𝑥

𝑑𝑡2
} +𝑀 {

𝑑2𝑦

𝑑𝑡2
} − 3𝑀{𝑥} + 5𝑀{𝑦} = 0

}
 
 

 
 

                                                                                                           (3) 
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Now using the property, Mohand transform of the derivatives of the function, in (3), we have 

𝑣2𝑀{𝑥} − 𝑣3𝑥(0) − 𝑣2𝑥′(0) + 3𝑀{𝑥} − 2𝑀{𝑦} = 0

𝑣2𝑀{𝑥} − 𝑣3𝑥(0) − 𝑣2𝑥′(0) + 𝑣2𝑀{𝑦} − 𝑣3𝑦(0) − 𝑣2𝑦′(0) − 3𝑀{𝑥} + 5𝑀{𝑦} = 0
}                                 (4) 

 

Using (2) in (4), we have 

(𝑣2 + 3)𝑀{𝑥} − 2𝑀{𝑦} = 3𝑣2

(𝑣2 − 3)𝑀{𝑥} + (𝑣2 + 5)𝑀{𝑦} = 5𝑣2
}                                                                                                                         (5) 

 

Solving the system (5) for 𝑀{𝑥}and 𝑀{𝑦}, we have 

𝑀{𝑥} =
11

4
[

𝑣2

(𝑣2 + 1)
] +

1

4
[

𝑣2

(𝑣2 + 9)
]

𝑀{𝑦} =
11

4
[

𝑣2

(𝑣2 + 1)
] −

3

4
[

𝑣2

(𝑣2 + 9)
]
}
 
 

 
 

                                                                                                                        (6)  

Now taking inverse Mohand transform of system (6), we have 

𝑥 =
11

4
𝑠𝑖𝑛𝑡 +

1

12
𝑠𝑖𝑛3𝑡

𝑦 =
11

4
𝑠𝑖𝑛𝑡 −

1

4
𝑠𝑖𝑛3𝑡

}                                                                                                                                                  (7) 

 

which is the required solution of (1) with (2). 

 

Solution using Elzaki transforms: 

Taking Elzaki transform of system (1), we have 

𝐸 {
𝑑2𝑥

𝑑𝑡2
} + 3𝐸{𝑥} − 2𝐸{𝑦} = 0

𝐸 {
𝑑2𝑥

𝑑𝑡2
} + 𝐸 {

𝑑2𝑦

𝑑𝑡2
} − 3𝐸{𝑥} + 5𝐸{𝑦} = 0

}
 
 

 
 

                                                                                                              (8) 

 

 

Now using the property, Elzaki transform of the derivatives of the function, in (8), we have 
1

𝑣2
𝐸{𝑥} − 𝑥(0) − 𝑣𝑥′(0) + 3𝐸{𝑥} − 2𝐸{𝑦} = 0

1

𝑣2
𝐸{𝑥} − 𝑥(0) − 𝑣𝑥′(0) +

1

𝑣2
𝐸{𝑦} − 𝑦(0) − 𝑣𝑦′(0) − 3𝐸{𝑥} + 5𝐸{𝑦} = 0

}                                              (9) 

 

Using (2) in (9), we have 

(
1

𝑣2
+ 3)𝐸{𝑥} − 2𝐸{𝑦} = 3𝑣

(
1

𝑣2
− 3)𝐸{𝑥} + (

1

𝑣2
+ 5)𝐸{𝑦} = 5𝑣

}                                                                                                                         (10) 

 

Solving the system (10) for 𝐸{𝑥} and 𝐸{𝑦}, we have 

𝐸{𝑥} =
11

4
[
𝑣3

1 + 𝑣2
] +

1

4
[

𝑣3

1 + 9𝑣2
]

𝐸{𝑦} =
11

4
[
𝑣3

1 + 𝑣2
] −

3

4
[

𝑣3

1 + 9𝑣2
]
}
 
 

 
 

                                                                                                                             (11)  

 

Now taking inverse Elzaki transform of system (11), we have 

𝑥 =
11

4
𝑠𝑖𝑛𝑡 +

1

12
𝑠𝑖𝑛3𝑡

𝑦 =
11

4
𝑠𝑖𝑛𝑡 −

1

4
𝑠𝑖𝑛3𝑡

}                                                                                                                                                  (12) 
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which is the required solution of (1) with (2). 

 

8.2 Consider a system of linear ordinary differential equations  
𝑑𝑥

𝑑𝑡
+ 𝑦 = 2𝑐𝑜𝑠𝑡

𝑥 +
𝑑𝑦

𝑑𝑡
= 0

}                                                                                                                                                                (13) 

with 𝑥(0) = 0, 𝑦(0) = 1                                                                                                                                                     (14)  
 

Solution using Mohand transforms: 

Taking Mohand transform of system (13), we have 

𝑀 {
𝑑𝑥

𝑑𝑡
} + 𝑀{𝑦} = 2𝑀{𝑐𝑜𝑠𝑡}

𝑀{𝑥} + 𝑀 {
𝑑𝑦

𝑑𝑡
} = 0

}                                                                                                                                        (15) 

 

Now using the property, Mohand transform of the derivatives of the function, in (15), we have 

𝑣𝑀{𝑥} − 𝑣2𝑥(0) + 𝑀{𝑦} =
2𝑣3

(𝑣2 + 1)

𝑀{𝑥} + 𝑣𝑀{𝑦} − 𝑣2𝑦(0) = 0

}                                                                                                                         (16) 

 

Using (14) in (16), we have 

𝑣𝑀{𝑥} + 𝑀{𝑦} =
2𝑣3

(𝑣2 + 1)

𝑀{𝑥} + 𝑣𝑀{𝑦} = 𝑣2
}                                                                                                                                          (17) 

 

 

Solving the system (17) for 𝑀{𝑥}and 𝑀{𝑦}, we have 

 𝑀{𝑥} = [
𝑣2

(𝑣2 + 1)
]

𝑀{𝑦} = [
𝑣3

(𝑣2 + 1)
]
}
 
 

 
 

                                                                                                                                                         (18)  

 

Now taking inverse Mohand transform of system (18), we have 
𝑥 = 𝑠𝑖𝑛𝑡
𝑦 = 𝑐𝑜𝑠𝑡

}                                                                                                                                                                             (19) 

which is the required solution of (13) with (14). 

 

Solution using Elzaki transforms: 

Taking Elzaki transform of system (13), we have 

𝐸 {
𝑑𝑥

𝑑𝑡
} + 𝐸{𝑦} = 2𝐸{𝑐𝑜𝑠𝑡}

𝐸{𝑥} + 𝐸 {
𝑑𝑦

𝑑𝑡
} = 0

}                                                                                                                                         (20) 

 

Now using the property, Elzaki transform of the derivatives of the function, in (20), we have 

1

𝑣
𝐸{𝑥} − 𝑣𝑥(0) + 𝐸{𝑦} =

2𝑣2

1 + 𝑣2

𝐸{𝑥} +
1

𝑣
𝐸{𝑦} − 𝑣𝑦(0) = 0

}                                                                                                                               (21) 

 

Using (14) in (21), we have 
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1

𝑣
𝐸{𝑥} + 𝐸{𝑦} =

2𝑣2

1 + 𝑣2

𝐸{𝑥} +
1

𝑣
𝐸{𝑦} = 𝑣

}                                                                                                                                             (22) 

 

Solving the system (22) for 𝐸{𝑥}and 𝐸{𝑦}, we have 

𝐸{𝑥} = [
𝑣3

1 + 𝑣2
]

𝐸{𝑦} = [
𝑣2

1 + 𝑣2
]
}
 
 

 
 

                                                                                                                                                             (23)  

 

Now taking inverse Elzaki transform of system (23), we have 
𝑥 = 𝑠𝑖𝑛𝑡
𝑦 = 𝑐𝑜𝑠𝑡

}                                                                                                                                                                           (24) 

which is the required solution of (13) with (14). 

 

8.3 Consider a system of linear ordinary differential equations  
𝑑𝑧

𝑑𝑡
+ 𝑥 = 𝑠𝑖𝑛𝑡

𝑑𝑥

𝑑𝑡
− 𝑦 = 𝑒𝑡

𝑑𝑦

𝑑𝑡
+ 𝑧 + 𝑥 = 1}

 
 

 
 

                                                                                                                                                             (25) 

with 𝑥(0) = 1, 𝑦(0) = 1, 𝑧(0) = 0                                                                                                                                 (26)  
 

Solution using Mohand transforms: 

Taking Mohand transform of system (25), we have 

𝑀 {
𝑑𝑧

𝑑𝑡
} + 𝑀{𝑥} = 𝑀{𝑠𝑖𝑛𝑡}

𝑀 {
𝑑𝑥

𝑑𝑡
} − 𝑀{𝑦} = 𝑀{𝑒𝑡}

𝑀 {
𝑑𝑦

𝑑𝑡
} + 𝑀{𝑧} + 𝑀{𝑥} = 𝑀{1}

}
 
 

 
 

                                                                                                                               (27) 

 

Now using the property, Mohand transform of the derivatives of the function, in (27), we have 

𝑣𝑀{𝑧} − 𝑣2𝑧(0) + 𝑀{𝑥} = [
𝑣2

(𝑣2 + 1)
]

𝑣𝑀{𝑥} − 𝑣2𝑥(0) − 𝑀{𝑦} = [
𝑣2

𝑣 − 1
]

𝑣𝑀{𝑦} − 𝑣2𝑦(0) + 𝑀{𝑧} +𝑀{𝑥} = 𝑣 }
 
 

 
 

                                                                                                                    (28) 

 

Using (26) in (28), we have 

𝑣𝑀{𝑧} + 𝑀{𝑥} = [
𝑣2

(𝑣2 + 1)
]

𝑣𝑀{𝑥} − 𝑀{𝑦} = [
𝑣3

𝑣 − 1
]

𝑣𝑀{𝑦} + 𝑀{𝑧} +𝑀{𝑥} = 𝑣 + 𝑣2}
 
 

 
 

                                                                                                                              (29) 

 

Solving the system (29) for 𝑀{𝑥}, 𝑀{𝑦}and 𝑀{𝑧}, we have 
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𝑀{𝑥} = [
𝑣2

𝑣 − 1
] + [

𝑣2

(𝑣2 + 1)
]

𝑀{𝑦} = [
𝑣3

(𝑣2 + 1)
]

𝑀{𝑧} = 𝑣 − [
𝑣2

𝑣 − 1
]

}
 
 
 

 
 
 

                                                                                                                                     (30)  

 

Now taking inverse Mohand transform of system (30), we have 

𝑥 = 𝑒𝑡 + 𝑠𝑖𝑛𝑡
𝑦 = 𝑐𝑜𝑠𝑡

𝑧 = 1 − 𝑒𝑡
}                                                                                                                                                                (31) 

which is the required solution of (25) with (26). 

 

Solution using Elzaki transforms: 

Taking Elzaki transform of system (25), we have 

𝐸 {
𝑑𝑧

𝑑𝑡
} + 𝐸{𝑥} = 𝐸{𝑠𝑖𝑛𝑡}

𝐸 {
𝑑𝑥

𝑑𝑡
} − 𝐸{𝑦} = 𝐸{𝑒𝑡}

𝐸 {
𝑑𝑦

𝑑𝑡
} + 𝐸{𝑧} + 𝐸{𝑥} = 𝐸{1}

}
 
 

 
 

                                                                                                                               (32) 

 

 

 

Now using the property, Elzaki transform of the derivatives of the function, in (32), we have 

1

𝑣
𝐸{𝑧} − 𝑣𝑧(0) + 𝐸{𝑥} = [

𝑣3

1 + 𝑣2
]

1

𝑣
𝐸{𝑥} − 𝑣𝑥(0) − 𝐸{𝑦} = [

𝑣2

1 − 𝑣
]

1

𝑣
𝐸{𝑦} − 𝑣𝑦(0) + 𝐸{𝑧} + 𝐸{𝑥} = 𝑣2}

  
 

  
 

                                                                                                                       (33) 

 

Using (26) in (33), we have 

1

𝑣
𝐸{𝑧} + 𝐸{𝑥} = [

𝑣3

(𝑣2 + 1)
]

1

𝑣
𝐸{𝑥} − 𝐸{𝑦} = [

𝑣

1 − 𝑣
]

1

𝑣
𝐸{𝑦} + 𝐸{𝑧} + 𝐸{𝑥} = 𝑣2 + 𝑣}

  
 

  
 

                                                                                                                              (34) 

 

Solving the system (34) for 𝐸{𝑥}, 𝐸{𝑦} and 𝐸{𝑧}, we have 

𝐸{𝑥} = [
𝑣2

1 − 𝑣
] + [

𝑣3

1 + 𝑣2
]

𝐸{𝑦} = [
𝑣2

1 + 𝑣2
]

     𝐸{𝑧} = 𝑣2 − [
𝑣2

1 − 𝑣
]
}
 
 
 

 
 
 

                                                                                                                                      (35)  

 

Now taking inverse Elzaki transform of system (35), we have 

𝑥 = 𝑒𝑡 + 𝑠𝑖𝑛𝑡
𝑦 = 𝑐𝑜𝑠𝑡

    𝑧 = 1 − 𝑒𝑡
}                                                                                                                                                              (36) 
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which is the required solution of (25) with (26). 

 

IX. CONCLUSIONS 
 

In this paper, we have successfully discussed the comparative study of Mohand and Elzaki transforms. In 

application section, we solve systems of differential equations (Homogeneous & Non-Homogeneous) comparatively 

using both the transforms. The numerical applications which are given in application section show that both the 

transforms (Mohand and Elzaki transforms) are closely connected to each other. 
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