Prime Labeling in Duplicate Structures of Select Graphs Arun Verma^{*1} & Sneha Bhardwaj² ^{*1}Research Scholar, Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli – 627012, Tamilnadu, India ²Guest Lecturer, Government Arts College (Autonomous) Kumbakonam - 612001, Tamilnadu, India

ABSTRACT

A graph G with n vertices is said to admit prime labeling if its vertices can be labeled with distinct positive integers not exceeding n such that the labels of each pair of adjacent vertices are relatively prime. A graph G which admits prime labeling is called a prime graph. In this paper we prove that the duplicate graph of the path P_{n} where $n \ge 2$, the duplicate graph of cycle C_n where $n \ge 3$, the duplicate graph of star S_n where $n \ge 3$, the duplicate graph of double star $DS_{n,n}$ where $n \ge 2$, the duplicate graph of comb graph Cb_n where $n \ge 2$, and the duplicate graph of bistar graph $B_{n,n}$ for all integers $n \ge 2$ are prime labeling.

Keywords: Graph labeling, Prime labeling, Prime graph, Duplicate graph

I. **INTRODUCTION**

The concept of graph labeling was introduced by Rosa in 1967[4]. A graph labeling is an assignment of integers to the vertices or edges or both subject to certain condition(s). If the domain of the mapping is the set of vertices (or edges), then the labeling is called a vertex labeling (or edge labeling). In the intervening years various labeling of graphs have been investigated in over 2000 papers. The notion of prime labeling graph was introduced by Roger

Entringer and was discussed in a paper by tout [11]. Fu and Huang [3] proved that P_n and $K_{1,n}$ are prime graphs. Lee et al [5] proved that W_n is a prime graph if and only if n is even. Deretsky et al [2] proved that C_n is a prime graph. Meena and Kavitha proved the prime labeling for some butterfly related graph and also investigated the prime labeling of duplication of some star related graphs [6] [7].

The concept of duplicate graph was introduced by E. Sampathkumar and he proved many result on it [8]. K.

Thirusangu, P.P. Ulaganathan and B. Selvam have proved that the duplicate graph of a path graph P_m is cordial[9]. K. Thirusangu, P.P Ulaganathan and P. Vijayakumar proved that the duplicate graph of ladder graph is cordial, total cordial and prime cordial [10]. In this paper we consider only simple finite, Undirected and nontrivial graph G = (V(G), E(G)) with the vertex set V(G) and the edge set E(G). The set of vertices adjacent to a vertex u of G

is denoted by N(u). For notation and terminology we refer to Bondy and Murthy [1].

II. **PRELIMINARIES**

Definition 2.1A graph labeling is an assignment of integers to the vertices or edges or both subject to the certain condition(s). If the domain of the mapping is the set of vertices (or edges), then the labeling is called a vertex labeling (or an edge labeling).

Definition 2.2 A prime labeling of a graph G of order n is an injective function $f: V \to \{1, 2, 3, ..., n\}$ such that for every pair of adjacent vertices u and v, gcd(f(u), f(v)) = 1. The graph which admits prime labeling is called prime graph.

Definition 2.3 Let G(V, E) be a simple graph. A duplicate graph of G is $DG = (V_1, E_1)$ where the vertex set $V_1 = V \cup V^1$ and $V \cap V^1 = \phi$ and $f : V \to V^1$ is bijective (for $v \in V$, we write $f(v) = V^1$) and the edge set E_1 of DG is defined as: The edge UV is in E if and only if both uv^1 and u^1v are edges in E_1 .

Definition 2.4Double star $DS_{n,n}$ is a tree $K_{1,n,n}$ obtained from the star $K_{1,n}$ by adding the new pendant edge of the existing n pendant vertices. It has 2n+1 vertices and 2n edges.

Definition 2.5The comb C_{bn} is obtained from a path P_n by attaching a pendant edge at each vertex of the path P_n .

Definition 2.6Abistar $B_{n,n}$ is a graph obtained from K_2 by joining n pendant edges to each end of K_2 . The edge K_2 is called the central edge of $B_{n,n}$ and the vertices of K_2 are called the central vertices of $B_{n,n}$

Bertrand's Postulate 2.7For every positive integer n > 1 there is a prime p such that n .

In this paper we prove that the duplicate graph of the path P_n where $n \ge 2$, the duplicate graph of cycle C_n where $n \ge 3$, the duplicate graph of star S_n where $n \ge 3$, the duplicate graph of double star $DS_{n,n}$ where $n \ge 2$, the duplicate graph of comb graph Cb_n where $n \ge 2$, and the duplicate graph of bistar graph $B_{n,n}$ where $n \ge 2$ are prime labeling.

III. MAIN RESULTS

Theorem 3.1 The duplicate graph of path P_n for all integers $n \ge 2$ is prime.

Proof Let $V(P_n) = \{v_i / 1 \le i \le n\}$ and $E(P_n) = \{v_i v_{i+1} / 1 \le i \le n-1\}$

Let *G* be the duplicate graph of path P_n and let $v_1, v_2, v_3, ..., v_n, v_1^1, v_2^1, v_3^1, ..., v_n^1$ be the new vertices and the edges are $e_1, e_2, e_3, ..., e_{n-1}, e_1^1, e_2^1, e_3^1, ..., e_{n-1}^1$ respectively.

Then $V(G) = \{v_i, v_i^1 / 1 \le i \le n\}$ $E(G) = \{v_i v_{i+1}^1 / 1 \le i \le n-1\} \cup \{v_i^1 v_{i+1} / 1 \le i \le n-1\}$ Now |V(G)| = 2n, |E(G)| = 2(n-1).

Define a labeling
$$f: V(G) \to \{1, 2, 3, ..., 2n\}$$
 as follows
let $f(v_i) = i$
 $f(v_i) = n + i$
 $f(v_i^1) = n + i$
let $f(i) = n + i$
 $f(v_i^1) = n + i$
 $f(v_i^1$

$$if i = \begin{cases} 2, 4, 6, \dots, n \text{ for 'n' is even} \\ or \\ 2, 4, 6, \dots, n-1 \end{cases}$$

Clearly all the labels are distinct.

For any edge $e = v_i v_{i+1}^1 \in G$,

 $f(v_i^1) = i$

For any edge
$$f(i) = gcd(i, i+1)$$

 $gcd(f(v_i), f(v_{i+1}^1)) = gcd(i, i+1)$
if $i = \begin{cases} 1, 3, 5, ..., n-1 \text{ for } n \text{ is even} \\ 0, r \\ 1, 3, 5, ..., n-2 \end{cases}$

=1 Since the labels are consecutive integers.

$$gcd(f(v_i), f(v_{i+1}^{1})) = gcd(n+i, n+i+1)$$
if $i = \begin{cases} 2, 4, 6, ..., n-2 \text{ for 'n' is even} \\ 0r \\ 2, 4, 6, ..., n-1 \end{cases}$

= 1 Since the labels are consecutive integers. For any edge $e = v_i^1 v_{i+1} \in G$,

$$gcd(f(v_i^1), f(v_{i+1})) = gcd(n+i, n+i+1) \qquad if i = \begin{cases} 1, 3, 5, \dots, n-1 \text{ for } n \text{ is even} \\ 0r \\ 1, 3, 5, \dots, n-2 \end{cases}$$

=1 Since the labels are consecutive integers.

$$gcd(f(v_i^1), f(v_{i+1})) = gcd(i, i+1)$$
if $i = \begin{cases} 2, 4, 6, ..., n-2 \text{ for 'n' is even} \\ 0r \\ 2, 4, 6, ..., n-1 \end{cases}$

= 1 Since they are all consecutive positive integers.

Thus f admits prime labeling. Hence duplicate graph of path P_n is a prime graph.

Theorem 3.2 The duplicate graph of cycle C_n for all integers $n \ge 3$ is a prime graph.

Proof

Let V(G) = { $v_i / 1 \le i \le n$ } E(G) = { $v_i v_{i+1} / 1 \le i \le n - 1$ } \cup { $v_n v_1$ }.

Let *G* be the duplicate graph obtained by duplicate the cycle C_n . Let $v_1, v_2, v_3, ..., v_n, v_1^1, v_2^1, v_3^1, ..., v_n^1$ and $e_1, e_2, e_3, ..., e_n, e_1^1, e_2^1, e_3^1, ..., e_n^1$ respectively be the new set of vertices and edges of the duplicate graph of cycle C_n . Then $V(G) = \{v_i v_i^1 / 1 \le i \le n\}$ $E(G) = \{v_i v_{i+1}^1 / 1 \le i \le n - 1\} \cup \{v_i v_n^1\} \cup \{v_i^1 v_{i+1} / 1 \le i \le n - 1\} \cup \{v_1^1 v_n\}$. Now |V(G)| = 2n and E(G) = 2n.

Define a labeling $f: V(G) \rightarrow \{1, 2, 3, ..., 2n\}$ as follows.

Similarly If 'n' is odd then $gcd(f(v_1^1), f(v_n)) = gcd(n+i+1, n+i) = 1$. Since both are consecutive integers. Now f admits prime labeling. Hence G is the prime graph.

Theorem 3.3 The duplicate graph of star S_n , for all integers $n \ge 3$ is a prime graph.

Volume 26, Issue 1, 2023

https://kyupeerref.link

Proof Let $V(S_n) = \{v_i / 0 \le i \le n\}$ and $E(S_n) = \{v_0 v_i / 1 \le i \le n\}$. Let G be the duplicate graph of the star S_n and let $v_0, v_1, ..., v_n, v_0^1, v_1^1, ..., v_n^1$ be the new vertices and $e_1^1, e_2^1, ..., e_n^l, e_1, e_2, ..., e_n$ be the new edges of the duplicate graph of star S_n . Then $V(G) = \{v_i, v_i^1 \setminus 0 \le i \le n\}$, $E(G) = \{v_0 v_i^1 \setminus 1 \le i \le n\} \cup \{v_0^1 v_i \setminus 1 \le i \le n\}$. Then |V(G)| = 2(n+1) and |E(G)| = 2n.

Define the labeling $f:V(G) \to \{1,2,3,...,2(n+1)\}$ as follows Let $f(v_i) = 2i+1$ if i=0,1,2,3,...n $f(v_i^1) = 2i+2$ if i=0,1,2,3,...nClearly all the labels are distinct. For any edge $e = v_0 v_i^1 \in G$, $gcd(f(v_0), f(v_i^1)) = gcd(1,2(i+1))$ if i=1,2,3,...n = 1and for any edge $e = v_0^1 v_i \in G$, $gcd(f(v_0^1), f(v_i)) = gcd(2,2i+1)$ if i=1,2,3,...n

$$= \gcd(2, odd)$$
 if $i = 1, 2, 3, ... n$
= 1

Thus f admits prime labeling.

Hence the duplicate graph of the star S_n is a prime graph.

Theorem 3.4 The duplicate graph of double star $DS_{n,n}$ for all integers $n \ge 2$ is a prime graph.

Proof

Let $V(DS_{n,n}) = \{v_i / 0 \le i \le 2n\}$ $E(DS_{n,n}) = \{v_0v_i / 1 \le i \le n\} \cup \{v_iv_{n+i} / 1 \le i \le n\}$ $E(DS_{n,n}) = \{v_0v_i / 1 \le i \le n\} \cup \{v_iv_{n+i} / 1 \le i \le n\}$ Let *G* be the duplicate graph of double star $DS_{n,n}, n \ge 2$. So we get $v_0, v_1, \dots, v_n, v_{n+1}, \dots, v_{2n}, v_0^1, v_1^1, \dots, v_n^1, v_{n+1}^1, \dots, v_{2n}^1$ and $e_1, e_2, \dots, e_n, e_{n+1}, \dots, e_{2n}, e_n^1, e_{n+1}^1, \dots, e_{2n}^1$ respectively be the new set of vertices and edges of the duplicate graph of double star $DS_{n,n}$. Now $V(G) = \{v_iv_i^1 / 0 \le i \le 2n\}$ and $E(G) = \{v_0v_i^1 / 1 \le i \le n\} \cup \{v_0^1v_i / 1 \le i \le n\} \cup \{v_iv_{n+i}^1 / 1 \le i \le n\} \cup \{v_i(C)\} = 4n + 2$ and |E(G)| = 4n Define the labeling $f: V(G) \rightarrow \{1, 2, 3, ..., 4n+2\}$ as follows Let $f(v_i) = 2i+1$ if i=0,1,2,3,...2n $f(v_0^1) = 2$ $f(v_i^1) = 2n + 2(i+1)$ $if^{i=1,2,3,...n}$ $i = n + 1, n + 2, n + 3, \dots 2n$ $f(v_i^1) = 2(i+1) - 2n$ Clearly all the labels are distinct. For any edge $e = v_0 v_i^1 \in G$. $gcd(f(v_0), f(v_i^1)) = gcd(1, f(v_i^1)) = 1$ i = 1, 2, 3, ..., nFor any edge $e = v_0^1 v_i \in G$, $if^{i=1,2,3,...n}$ $gcd(f(v_0^1), f(v_i)) = gcd(2, f(v_i))$ = gcd(2, odd) i = 1, 2, 3, ... n=1 For any edge $e = v_i v_{n+i}^1 \in G$, $gcd(f(v_i), f(v_{n+i}^1)) = gcd(2i+1, 2i+2)$ if i=1, 2, 3, ...n=1 since the vertex labels are consecutive integers. For any edge $e = v_i^1 v_{n+i} \in G$. $gcd(f(v_i^1), f(v_{n+i})) = gcd(2n+2(i+1), 2n+2i+1)$ if i=1, 2, 3, ...n=1. Since they are consecutive positive integers. Thus f admits prime labeling.

Hence the duplicate graph of double star $DS_{n,n}$ is a prime graph.

Theorem 3.5 The duplicate graph of comb graph Cb_n for all integers $n \ge 2$ is a prime graph.

Proof $V(Cb_n) = \{v_i / 1 \le i \le 2n\}$ Let

 $\mathbf{E}(\mathbf{Cb}_n) = \left\{ v_i v_{i+1} / i = 1, 3, \dots 2 \, \mathbf{n} - 1 \right\} \cup \left\{ v_i v_{i+2} / i = 1, 3, 5, \dots, 2 \, \mathbf{n} - 3 \right\}.$

Let *G* be the duplicate graph of comb graph Cb_n for all integers $n \ge 2$. Now $v_1, v_2, ..., v_{2n}, v_1^1, v_2^1, ..., v_{2n}^1$ and $e_1, e_2, ..., e_{2m-1}, e_1^1, e_2^1, ..., e_{2m-1}^1$ respectively be the new set of vertices and edges of the duplicate graph of comb Cb_n .

Then $V(G) = \{v_i, v_i^1 / 1 \le i \le 2n\}$ and $E(G) = \{v_i v_{i+1}^1 / i = 1, 3, 5, ..., 2n - 1\} \cup \{v_i v_{i+2}^1 / i = 1, 3, 5, ..., 2n - 3\} \cup \{v_i v_{i-2}^1 / i = 3, 5, 7, ..., 2n - 1\}$ $\cup \{v_i v_{i-1}^1 / i = 2, 4, 6, ..., 2n\}$ Now |V(G)| = 4n and |E(G)| = 4n - 2.

Define the labeling $f: V(G) \rightarrow \{1, 2, 3, ..., 4n\}$ as follows

$$\begin{split} f(v_{4i-3}) &= 4i-3 & \text{if } i = \begin{cases} 1,2,3,...,\frac{n}{2} \text{ for } n \text{ is even} \\ \text{or} \\ 1,2,3,...,\frac{n+1}{2} \\ 1,2,3,...,\frac{n}{2} \text{ for } n \text{ is even} \\ \text{or} \\ 1,2,3,...,\frac{n}{2} \text{ for } n \text{ is even} \\ \text{or} \\ 1,2,3,...,\frac{n}{2} \text{ for } n \text{ is even} \\ \text{or} \\ 1,2,3,...,\frac{n}{2} \text{ for } n \text{ is even} \\ \text{or} \\ 1,2,3,...,\frac{n-1}{2} \\ 1,2,3,...,\frac{n-1}{2} \\ 1,2,3,...,\frac{n-1}{2} \\ 1,2,3,...,\frac{n-1}{2} \\ 1,2,3,...,\frac{n-1}{2} \\ 1,2,3,...,\frac{n}{2} \text{ for } n \text{ is even} \\ \text{or} \\ 1,2,3,...,\frac{n}{2} \text{ for } n \text{ is even} \\ \text{or} \\ 1,2,3,...,\frac{n}{2} \text{ for } n \text{ is even} \\ \text{or} \\ 1,2,3,...,\frac{n}{2} \text{ for } n \text{ is even} \\ \text{or} \\ 1,2,3,...,\frac{n}{2} \text{ for } n \text{ is even} \\ \text{or} \\ 1,2,3,...,\frac{n}{2} \text{ for } n \text{ is even} \\ \text{or} \\ 1,2,3,...,\frac{n}{2} \text{ for } n \text{ is even} \\ \text{or} \\ 1,2,3,...,\frac{n}{2} \text{ for } n \text{ is even} \\ \text{or} \\ 1,2,3,...,\frac{n}{2} \text{ for } n \text{ is even} \\ \text{or} \\ 1,2,3,...,\frac{n}{2} \text{ for } n \text{ is even} \\ \text{or} \\ 1,2,3,...,\frac{n}{2} \text{ for } n \text{ is even} \\ \text{or} \\ 1,2,3,...,\frac{n}{2} \text{ for } n \text{ is even} \\ \text{or} \\ 1,2,3,...,\frac{n}{2} \text{ for } n \text{ is even} \\ \text{or} \\ 1,2,3,...,\frac{n}{2} \text{ for } n \text{ is even} \\ \text{or} \\ 1,2,3,...,\frac{n}{2} \text{ for } n \text{ is even} \\ \text{or} \\ 1,2,3,...,\frac{n}{2} \text{ for } n \text{ is even} \\ \text{or} \\ 1,2,3,...,\frac{n}{2} \text{ for } n \text{ is even} \\ \text{or} \\ 1,2,3,...,\frac{n-1}{2} \\ \text{if } i = \begin{cases} 1,2,3,...,\frac{n-1}{2} \\ 1,2,3,...,\frac{n-1}{2} \\ 1,2,3,...,\frac{n-1}{2} \end{cases} \end{cases}$$

Clearly all the labels are distinct.

For any edge $e = v_{4i-3}v_{4i-2}^1 \in G$,

$$\inf_{i \neq i} i = \begin{cases}
1, 2, 3, \dots, \frac{n}{2} \text{ for } n \text{ is even} \\
or \\
1, 2, 3, \dots, \frac{n+1}{2}
\end{cases}$$

=1 Since the vertex labels are consecutive integers.

 $gcd(f(v_{4i-3}), f(v_{4i-2}^{1})) = gcd(4i-3, 4i-2)$

For any edge $e = v_{4i-3}v_{4i-1}^1 \in G$,

$$\gcd(f(v_{4i-3}), f(v_{4i-1}^{1})) = \gcd(4i-3, 4i-1) \qquad \text{if } i = \begin{cases} 1, 2, 3, \dots, \frac{n}{2} \text{ for } n \text{ is even} \\ or \\ 1, 2, 3, \dots, \frac{n-1}{2} \end{cases}$$

=1 Since these are consecutive odd integers. For any edge $e = v_{4i-3}v_{4i-5}^1 \in G$,

$$\gcd(f(v_{4i-3}), f(v_{4i-5}^{1})) = \gcd(4i-3, 4i-5) \quad \text{if } i = \begin{cases} 2, 3, 4, \dots, \frac{n}{2} \text{ for } n \text{ is even} \\ 0r \\ 2, 3, 4, \dots, \frac{n+1}{2} \end{cases}$$

=1 Since these are also consecutive odd numbers. For any edge $e = v_{4i-2}v_{4i-3}^1 \in G$,

$$\gcd(f(v_{4i-2}), f(v_{4i-3}^{1})) = \gcd(2n+4i-2, 2n+4i-3) \quad \text{if } i = \begin{cases} 1, 2, 3, \dots, \frac{n}{2} \text{ for } n \text{ is even} \\ or \\ 1, 2, 3, \dots, \frac{n+1}{2} \end{cases}$$

=1 Since these are consecutive integers. For any edge $e = v_{4i-1}v_{4i-3}^1 \in G$,

$$gcd(f(v_{4i-1}), f(v_{4i-3}^{1})) = gcd(2n+4i-1, 2n+4i-3) \quad \text{if } i = \begin{cases} 1, 2, 3, \dots, \frac{n}{2} \text{ for } n \text{ is even} \\ or \\ 1, 2, 3, \dots, \frac{n-1}{2} \end{cases}$$

=1 Since the labels are consecutive odd integers.

For any edge $e = v_{4i-1}v_{4i}^1 \in G$,

$$(i) = \gcd(2n+4i-1,2n+4i) \qquad \text{if } i = \begin{cases} 1,2,3,...,\frac{n}{2} \text{ for } n \text{ is even} \\ or \\ 1,2,3,...,\frac{n-1}{2} \end{cases}$$

 $gcd(f(v_{4i-1}), f(v_{4i}^{1}))$

=1 Since these are consecutive integers.

Volume 26, Issue 1, 2023

For any edge $e = v_{4i-1}v_{4i+1}^1 \in G$,

$$4i+1) \quad \text{if } i = \begin{cases} 1, 2, 3, ..., \frac{n-2}{2} \text{ for } n \text{ is even} \\ 0r \\ 1, 2, 3, ..., \frac{n-1}{2} \end{cases}$$

= 1 Since the vertex labels are consecutive odd integers. And for any edge $e = v_{4i}v_{4i-1}^1 \in G$,

$$\inf i = \begin{cases} 1, 2, 3, \dots, \frac{n}{2} \text{ for } n \text{ is even} \\ or \\ 1, 2, 3, \dots, \frac{n-1}{2} \end{cases}$$

 $gcd(f(v_{4i}), f(v_{4i-1}^{1})) = gcd(4i, 4i-1)$ = 1 Since these are all consecutive integers. Thus f admits prime labeling. Hence G is prime graph.

 $gcd(f(v_{4i-1}), f(v_{4i+1}^{1})) = gcd(2n+4i-1, 2n+$

Theorem 3.6 The duplicate graph of the bistar graph $B_{n,n}$ for all integers $n \ge 2$ is a prime graph.

 $i = \frac{p-1}{2}, \frac{p+1}{2}, \dots, 2n$

Proof
Let
$$V(B_{n,n}) = \{v_0, u_0, v_i / 1 \le i \le 2n\}$$

 $E(B_{n,n}) = \{v_0v_i / 1 \le i \le n\} \cup \{u_0v_i / n+1 \le i \le 2n\} \cup \{u_0v_0\}$
Let G be the duplicate graph of bistar $B_{n,n}$ for all integers $n \ge 2$.
Now let $v_0, u_0, v_1, v_2, ..., v_{2n}, v_0^1, u_0^1, v_1^1, v_{2n}^1, ..., v_{2n}^1$ and $e_1, e_2, ..., e_{2n+1}, e_1^1, e_2^1, ..., e_{2n+1}^1$ respectively be the new set of vertices
and edges of the duplicate graph of bistar $B_{n,n}$
Then $V(G) = \{u_0, u_0^1, v_i, v_i^1 / 0 \le i \le 2n\}$
and $E(G) = \{v_0v_i^1 / 1 \le i \le n\} \cup \{v_0^1v_i / 1 \le i \le n\} \cup \{u_0v_i^1 / n+1 \le i \le 2n\} \cup \{u_0^1v_i / n+1 \le i \le 2n\} \cup \{v_0u_0^1\} \cup \{v_0^1u_0\}$
Here $|V(G)| = 4n + 4$ and $|E(G)| = 4n + 2$.
Case (i)
Define the labeling $f: V(G) \rightarrow \{1, 2, 3, ..., 4n + 4\}$ as follows
 $f(v_i) = 2i + 1$ if $i = 0, 1, 2, ..., n$
 $f(u_0) = p$
where P' is the largest prime less than or equal to $\frac{4(n+1)}{2}$.
According to Bertrands Postulate such a prime exist with $2(n+1)$

 $f(v_i) = 2i + 3$ $f(v_0^1) = 2$

 $f(u_0^1) = 4$ $f(v_i^1) = 2i + 4$ $if^{i=1,2,...2n}$ Case(ii) If p = 4n + 3 then we define the labeling $f: V(G) \rightarrow \{1, 2, 3, ..., 4n + 4\}$ as follows $f(u_0) = p$ and $f(v_i) = 2i+1$ if i=0,1,2,...2n $f(v_0^1) = 2$ $f(u_0^1) = 4$ $if^{i=1,2,...2n}$ $f(v_i^1) = 2i + 4$ Clearly all the labels are distinct. For any edge $e = v_0 v_i^1 \in G$. $gcd(f(v_0), f(v_i^1) = gcd(1, 2i+4)$ if i=1, 2, ...n= 1 For any edge $e = v_0 u_0^1 \in G$, $gcd(f(v_0), f(u_0^1)) = gcd(1, 4) = 1$ For any edge $e = v_0^1 v_i \in G$, $gcd(f(v_0^1), f(v_i)) = gcd(2, 2i+1)$ if i=1, 2, ...n= gcd(2, odd) = 1 For any edge $e = v_0^1 u_0 \in G$, $gcd(f(v_0^1), f(u_0)) = gcd(2, p) = 1$ For any edge $e = u_0 v_i^1 \in G$, $gcd(f(u_0), f(v_i^1)) = gcd(p, 2i+4)$ if i=n+1, n+2, n+3, ..., 2n= 1 And for any edge $e = u_0^1 v_i \in G$, $gcd(f(u_0^1), f(v_i)) = gcd(4, f(v_i))$ if i = n + 1, n + 2, n + 3, ..., 2n $= \gcd(4, odd)$ =1. Thus f admits prime labeling. Hence G is prime graph.

IV. CONCLUSION

Here we investigate six corresponding results on prime labeling analogues work can be carried out for other families also.

V. ACKNOWLEDGMENT

The authors are highly thankful to the anonymous referees for their kind suggestions and comments.

REFERENCES

- 1. J.A. Bondy and U.S.R.Murthy, Graph Theory and Applications (North-Holland), New York, 1976.
- 2. T. Deretsky, S. M. Lee and J. Mitchem, "On Vertex Prime Labelings of Graphs in Graph Theory, CombinatoricsandApplications, Wiley, New York, 1 (1991), 359-369.

Bulletin of the Kyushu Institute of Technology - Pure and Applied Mathematics || ISSN 1343-867040

- 3. H.C. Fu and K.C.Huang, On Prime labeling Discrete Math, 127(1994), 181-186.
- 4. J.A. Gallian, A Dynamic Survey of Graph Labeling, The Electronic Journal of Combinatorics, DS6 (2014).
- 5. S.M.Lee, I.Wui, J.Yeh, On the amalgamation of prime graphs, Bull. Malaysian Math. Soc. (Second Series), 11(1988), 59-67.
- 6. S. Meena and P. Kavitha, Prime labeling for some butterfly related graphs, International Journal of Mathematical Archive, 5(10), 2014, 15-25.
- 7. S. Meena and P. Kavitha, Prime Labeling of Duplication of Some Star related Graphs, International Journal of Mathematics Trends and Technology- Vol.3, No.1, July 2015, 29-32.
- 8. E. Sampathkumar, On Duplicate Graphs, Journal of the Indian Math. Soc., 37, (1973), 285 293.
- 9. K.Thirusangu, P.P. Ulaganathan and B. Selvam, Cordial labeling in duplicate graphs, Int. J. Computer Math. Sci. Appl., 4 (1-2) (2010) 179 – 186.
- K. Thirusangu, P.P Ulaganathan and P. Vijaya Kumar, Some Cordial Labeling of Duplicate Graph of Ladder Graph, Annals of Pure and Applied Mathematics, Vol. 8, No. 2, 2014, :43-50.
- 11. A.Tout, A.N.Dabboucy and K.Howalla, Prime labeling of graphs, Nat. Acad. Sci letters 11(1982), 365-368.